Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.




Stuart Peirson is an Associate Professor in the Nuffield Laboratory of Ophthalmology and Group Leader in the fundamental neuroscience theme of the Sleep and Circadian Neuroscience Institution (SCNi). After completing his PhD in Neuroscience at the Institute of Ophthalmology UCL he moved to Imperial College to work as a BBSRC postdoctoral Research Associate. During this time Dr Peirson also acted as technical supervisor for the quantitative real-time PCR (qPCR) facility at Charing Cross Hospital. Subsequently, working as a Wellcome Trust Research Associate, Dr Peirson contributed to the identification of the melanopsin pRGC system in humans as well as the characterisation of melanopsin signalling pathways. Dr Peirson was appointed as a Lecturer at Imperial College in 2005 before moving to the University of Oxford in 2006. His work has continued to focus upon characterising the signalling pathways mediating the effects of light on physiology and behaviour, with the aim of identifying novel targets for the regulation of circadian rhythms and sleep. Through collaborations with clinical colleagues in the Oxford Eye Hospital he has also been involved in evaluating the impact of ocular disease on sleep and circadian rhythms.

Stuart Peirson

BSc, PhD

Associate Professor

Circadian Neuroscience

Research Summary

My research focuses on how the light environment regulates physiology and behaviour. The vertebrate retina contains photoreceptors that mediate the dual tasks of image formation and irradiance (brightness) detection. These irradiance detection tasks include the regulation of the circadian clock, locomotor activity, sleep/wake timing, pupil constriction, pineal melatonin synthesis, heart rate and cognitive performance. The central aims of this work are to understand how light information is transmitted from photoreceptor to brain and to identify the exent to which physiology and behaviour is regulated by light. This work relies upon the a range of molecular techniques such as the measurement of gene expression, in vitro and in vivo gene silencing, as well as an array of behavioural techniques including activity and sleep monitoring, cognitive testing and assays of retinal function such as pupillometry. Photobiology and biostatistics critically underpin this work.

Sources of Funding