Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Claus Nerlov

Ph.D.


Professor of Stem Cell Biology

Single cell biology and genetics to understand hematopoiesis, leukemogenesis and ageing

The hematopoietic stem cell is capable of maintaining the output of >10 cellular lineage for the entire lifespan of the organism. This is made possible by the presence of structures (niches) dedicated to long-term maintenance of the multi-potent stem cell state, as well as mechanisms for the generation and subsequent lineage specification of stem cell progeny lacking long-term self-renewal capacity.

We use genetic methods, combined with genome-wide gene expression and chromatin profiling, to address the complexity of the hematopoietic stem cell population, the niches that maintain them, and the changes hematopoietic stem cells and niches undergo during aging. We investigate the regulators (transcription factors, signaling molecules) that control the lineage commitment of multi-potent hematopoietic progenitors, as well as the cellular pathways that they specify. Finally, we model how mutations affecting the normal transcriptional control of myelopoiesis result in acute myeloid leukemia, and address how the leukemic stem cells responsible for the disease are maintained.

The final goal is to understand the molecular basis for and spatial organization of normal, aging and malignant hematopoiesis, and to use this knowledge to devise cell based and molecular therapies that can be used to treat hematopoietic insufficiencies and malignancies.