Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

During the first peak of the coronavirus pandemic, it became apparent that the processing of the standard COVID-19 test using nasal swab samples, while considered a gold standard, was slow, taking over 24 hours to give results in most cases.

As demand for quicker test results increased with supplies running low, scientists and engineers rushed to fill the gap at scale for rapid diagnostic testing that would replace the standard real-time reverse transcription polymerase chain reaction (rt-PCR) test.

Such technologies included rapid antigen tests, antibody tests, as well as tests using the loop-mediated isothermal amplification method (LAMP) and mass spectrometry. The UK is currently deploying “lateral flow” antigen tests, which deliver results on the spot, are cheap and easily mass produced. However they have important limitations.

With so many different types of test now on the market, how do we sort the wheat from the chaff and work out what form of testing is best for which healthcare or community setting? Our research group is testing the tests to find out.

Read the full article on The Conversation website, co-written by Gail Hayward, Nuffield Department of Primary Care Health Sciences website.

Oxford is a subscribing member of The ConversationFind out how you can write for The Conversation.

Similar stories

Oxford joins forces with 11 universities to launch social impact investment fund

The University of Oxford has joined forces with 11 leading universities to create Impact 12, an impact investment fund to support mission-led university ventures.

Potential for radiotherapy and VTP multimodality therapy for prostate cancer

A recent collaborative study from the University of Oxford has investigated the potential benefit of a combined therapy approach to prostate cancer treatment, using radiotherapy and vascular targeted photodynamic therapy (VTP), which could lead to first-in-man early phase clinical trials.

Latest data on immune response to COVID-19 reinforces need for vaccination, says Oxford-led study

A new study led by the University of Oxford has found that previous infection, whether symptomatic or asymptomatic, does not necessarily protect you long-term from COVID-19, particularly against new Variants of Concern.

First trimester placental scan - Artificial Intelligence in Health and Care Award

A first trimester 3D placental ultrasound scan which can predict fetal growth restriction and pre-eclampsia, could become part of a woman's routine care thanks to a new Artificial Intelligence in Health and Care Award.

Impaired antibody response to COVID-19 vaccination in patients with myeloid blood cancers

Oxford researchers have found that antibody responses to the first doses of COVID-19 vaccine in people with chronic myeloid blood cancers are not as strong as those among the general population.

Oxford University and partners win government funding to evaluate Paige Prostate Cancer Detection System

A prostate cancer detection software system to help pathologists quickly identify suspicious areas of tissue, developed by Paige, will be investigated in a multicentre clinical study led by Oxford University as part of a successful NHSx Artificial Intelligence Health and Care Award application.