Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Transient neurones match the spontaneous and sensory driven activities to shape cortical circuits: a landmark collaborative review published in Science from Professor Zoltán Molnár, Professor Patrick Kanold and Professor Heiko Luhmann.

Overlayed silhouttes of adult, adolescent, infant and baby craniums, highlighting neuronal circuits in their brains © Professor Zoltán Molnár

A new collaborative review between Department of Physiology, Anatomy & Genetics's Professor Zoltán Molnár, Professor Patrick Kanold (Johns Hopkins University Department of Biomedical Engineering and Kavli Neuroscience Discovery Institute) and Professor Heiko Luhmann (University Medical Center of the Johannes Gutenberg University Mainz) gives a comprehensive overview of the transient neuronal circuits in both the cerebral cortex and in the thalamus, the circuits that relay and process most of the information from our sensory environment.

The paper comes in response to the last two decades of developmental neuroscience research, during which a major focus has been on genetics, whereas the fundamentally important role of electrical activity from the earliest stages of brain development has only recently become evident. This review draws from each author’s research across the last three decades to demonstrate that during early development of the mammalian brain, transient neuronal populations integrate spontaneous and externally generated activity patterns to form mature cortical networks.

The full story is available on the Department of Physiology, Anatomy & Genetics website

Similar stories

Communication at the crossroads of the immune system

In his inaugural article in the Proceedings of the National Academy of Sciences as an NAS member (elected 2021), Prof Mike Dustin and his research team in Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences have explained how messages are passed across the immunological synapse. The research could have implications for future vaccine development and immunotherapy treatments.

Oxford spinout trials revolutionary bioelectronic implant to treat incontinence

The first participants in a clinical trial of a bioelectrical therapy to treat incontinence have received their “smart” bioelectronic implants.

COVID-19 is a leading cause of death in children and young people in the US

A new study led by researchers at the University of Oxford’s Department of Computer Science has found that, between 2021 and 2022, COVID-19 was a leading cause of death in children and young people in the United States, ranking eighth overall. The results demonstrate that pharmaceutical and public health interventions should continue to be applied to limit the spread of the coronavirus and protect again severe disease in this age group.

Three or more concussions linked with worse brain function in later life

Experiencing three or more concussions is linked with worsened brain function in later life, according to new research.

New blood test could save lives of heart attack victims

Researchers in the Department of Physiology, Anatomy and Genetics (DPAG) have developed a blood test that measures stress hormone levels after heart attacks. The test – costing just £10 – could ensure patients receive timely life-saving treatment.

COVID-19 increased public trust in science, new survey shows

A survey of over 2000 British adults has found that public trust in science, particularly genetics, increased significantly during the pandemic. However, those with extremely negative attitudes towards science tend to have high self-belief in their own understanding despite low textbook knowledge.