Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Prof Ellie Barnes (Nuffield Department of Medicine / DeLIVER lead) comments on the recent Nobel Prize in Medicine, awarded to Harvey J. Alter, Michael Houghton and Charles M. Rice for their discovery of the Hepatitis C virus, a major global health problem and a cause of cancer

The Nuffield Department of Medicines' DeLIVER study logo

In 1989, Harvey J. Alter, Michael Houghton and Charles M. Rice used what at the time were state-of-the-art technologies available to identify the virus that causes Hepatitis C infection. This ground-breaking discovery allowed for the development of blood tests to diagnose the Hepatitis C Virus (HCV) and saved millions of lives over the last 40 years.

Testing for HCV has enabled the discovery of chronic infections that results from the Hepatitis C virus. Currently 71 million people are living with HCV, as there is no vaccine to prevent infection. HCV remains a silent disease that is often only diagnosed until symptoms of late-stage liver disease develop. In many cases, it goes undetected until severe complications occur, the most serious of which is hepatocellular carcinoma (HCC). By this point, existing treatments are often less effective at clearing the infection.

Hepatocellular carcinoma is the most common type of primary liver cancer, which is common in those who have had liver scarring due to Hepatitis B and C infections. 400,000 people globally die each year from HCV, with hepatocellular carcinoma continually on the rise. As a result, viral hepatitis is still one of the most serious global pandemics at large. Due to the lack of an effective HCV vaccine and early detection methods for the diagnosis of hepatocellular carcinoma, it is crucial to develop techniques that can aid its early detection and thereby increase the survival rate of cancer patients.

The full blog is available on the Cancer Research UK Oxford Centre website

Similar stories

Alternating vaccines trial expands to include two additional vaccines

Clinical Trials Coronavirus COVID-19 General

Researchers running the Com-Cov study, launched in February to investigate alternating doses of the Oxford-AstraZeneca vaccine and the Pfizer vaccine, have today announced that the programme will be extended to include the Moderna and Novavax vaccines in a new study.

Oxford medical students launch flagship raffle in aid of NHS heroes and lifesaving medical equipment

General

Tingewick, a society formed of medical students from Oxford University, are hosting a virtual charity raffle. With over 70 amazing prizes, ranging from Truck festival tickets to restaurant vouchers to bags of books and even a bike, the raffle is an exciting way to celebrate lockdown lifting by supporting many wonderful Oxfordshire businesses whilst raising lots of money for charity.

UK and EU regulators conclude benefits of vaccination continue to outweigh the risks

Coronavirus COVID-19 General

Today, the medical regulators in the UK and Europe have announced their conclusions from their reviews of very rare cases of unusual blood clots in people who have received the Oxford-AstraZeneca coronavirus vaccine.

Link between COVID-19 infection and subsequent mental health and neurological conditions found

Coronavirus COVID-19 General Research

One in three COVID-19 survivors received a neurological or psychiatric diagnosis within six months of infection with the SARS-CoV-2 virus, an observational study of more than 230,000 patient health records published in The Lancet Psychiatry journal estimates. The study looked at 14 neurological and mental health disorders.

New national study of long-term impacts of debilitating lung damage from COVID-19

Coronavirus COVID-19 General Research

A new national study will investigate the long-term effects of lung inflammation and scarring from COVID-19. The study, launched with £2 million of funding from UK Research and Innovation (UKRI), aims to develop treatment strategies and prevent disability.