Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Designs are etched onto Silicon wafers and then cast designs into a flexible transparent material to create cell culture devices with miniature channels and features at a sub-cellular scale.
Neuronal axons aligned using microfludic channels
Human brain blood vessels grown in an 'organ on chip' system. Stroke like injury to one side causes vessels (red) to become leaky to a fluorescent dye (green).

Paul Holloway

Principal Investigator

My research utilises microfluidic technologies to precisely define the cellular micro-environment and enable new insights into neurovascular biology.

In the brain, endothelial cells, perivascular cells, glia and neurons are intimately coupled, enabling tight regulation of the blood brain barrier, responses to metabolic demands, and inflammatory status. This has lead to the consideration of these cellular elements as part of a functional unit termed the 'neurovascular unit'. Disruption of this system is evident in many human neurological disorders. However, investigating this system in humans and modelling the complex interactions in vitro is particularly challenging.

Recently, micro-fabrication techniques adopted from the semiconductor industry have allowed the production of miniaturised biological devices for complex, spatially-defined cell culture which can be used to mimic human organs.  As part of my Royal Commission Research Fellowship, at the University of Oxford’s Laboratory of Cerebral Ischemia, I am utilising ‘Organ on chip’ technologies to develop a three-dimensional, dynamic, heterotypic cellular model of the neurovascular unit. The pathophysiological relevance of this model will be interrogated in the context of stroke, testing the fidelity of cellular coupling and interaction by metabolically perturbing the system.


Dr Holloway has a background incorporating both neurovascular biology and microfluidic engineering. His PhD at Imperial College London and Post-doctoral position at Louisiana State University focused on novel therapeutic approaches to modulate immune cell trafficking in the cerebral microcirculation following stroke. Initial investigations using minimalistic flow assays, to investigate human immune-brain cell interactions in vitro, led Dr Holloway to pursue training in microfluidic engineering approaches at Princeton University followed by a post-doctoral position at the Centre for Hybrid Biodevices, University of Southampton. In this position Dr Holloway helped develop compartmentalised microfluidic cell culture platforms for the preparation of defined neuronal circuits to shed light on axonal transport and disease propagation. His current work utilises both advanced cell culture and microfabrication techniques to develop an organ on chip model of the neurovascular unit.