Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Aiden Doherty

Aiden Doherty

Aiden Doherty

Associate Professor

Wearable sensors, machine learning, genomics

I am an Associate Professor at the University of Oxford and lead Health Data Research UK’s national implementation project on reproducible machine learning. My research group at Oxford develops reproducible methods to analyse wearable sensor data in very large health studies to better understand the causes and consequences of disease. For example, we have developed methods to objectively measure physical activity in UK Biobank which are now actively used by researchers worldwide to demonstrate new associations with cardiovascular disease, depression, mood disorders, and others. These have allowed us to show that the lowest risk for cardiovascular disease in the UK Biobank cohort is seen at the highest level of accelerometer-measured physical activity, whether total, moderate-intensity, or vigorous-intensity. find that physical activity has a very strong association with incident cardiovascular disease. We have also developed machine learning methods to identify sleep and functional physical activity behaviours such as walking. In addition, we have discovered the first genetic variants associated with machine-learned sensor phenotypes. This work shows the first genetic evidence that physical activity might causally lower blood pressure.

Our group has also conducted research on wearable cameras, and are interested in other wearable sensors that can help better understand the causes and consequences of disease. If you are interested in joining our research group, please do get in contact. 

In 2015 I was one of only three EU Marie Curie Award winners (from ~9000 fellowship holders), selected for my contributions to health sensor data analysis. I have also contributed to the creation of guidelines on the use of mobile devices in clinical trials, in collaboration with the US Food and Drug Administration (FDA) supported Clinical Trials Transformation Initiative on “Mobile Clinical Trials”.


2015 Marie Sklodowska-Curie Actions COFUND Award (only 3 selected from ~9000 EU fellows between ’07-’13)

2015-17 British Heart Foundation Centre for Research Excellence intermediate transition fellowship

2010-13 Marie Curie postdoctoral fellowship (E.U. FP7 and Irish Health Research Board)

2005-08 Irish Research Council science PhD scholarship


Video profile for Marie Curie award

No limit to the benefits of exercise in reducing the risk of cardiovascular disease

Doctoral Training Centre Degrees