Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Safety is imperative before new medicines are given to patients – which is why drugs are tested on millions of animals worldwide each year to detect possible risks and side effects. But research shows computer simulations of the heart have the potential to improve drug development for patients and reduce the need for animal testing.

Animal testing has, to date, been the most accurate and reliable strategy for checking new drugs, but it is expensive, time consuming and – for some – highly controversial.

There is also the potential for some side effects to be missed due to the differences between animals and humans. Drug trials are particularly problematic for this reason and it’s clear that new testing methods are needed to enable the development of better and safer medicines.

Read the full article on The Conversation website, written by Elisa Passini, Blanca Rodriguez, and Patricia Benito, Oxford Department of Computer Science. 

Oxford is a subscribing member of The ConversationFind out how you can write for The Conversation.

Similar stories

Five ways the pandemic has affected routine medical care

Since the beginning of the pandemic, COVID has infected at least a third of the UK population and is estimated to have factored in the deaths of almost 200,000 people in the UK. But critically, COVID has also had a devastating impact on our healthcare systems. While this was expected, new evidence is beginning to reveal the scope of the issue – in particular the effects for people living with long-term health conditions.

Clinical trials for a malaria vaccine start in Mali and Indonesia

Sanaria Inc. announced that two new Phase 2 trials of its pioneering malaria vaccines have started. The first is in 6- to 10-year-old children living in Bancoumana, Mali, a malarious region of West Africa. The second is in Indonesian soldiers based in Sumatra, Indonesia. The soldiers will be deploying for six to nine months this coming August to an intensely malarious district in eastern Indonesia.

Mechanism of expanding bacteria revealed

A new study published in Nature has identified a potential Achilles heel in the protective layers surrounding Gram-negative bacteria that could aid in the development of next-generation antibiotics.

Discovery of gene involved in chronic pain creates new treatment target

Oxford researchers have discovered a gene that regulates pain sensitisation by amplifying pain signals within the spinal cord, helping them to understand an important mechanism underlying chronic pain in humans and providing a new treatment target.

Oxford's largest ever study into Varicose veins shows need for surgery is linked to genetics

A new international study by Oxford researchers published in Nature Communications establishes for the first time, a critical genetic risk score to predict the likelihood of patients suffering with Varicose veins to require surgery, as well as pointing the way towards potential new therapies.

Biological processes of ageing is key to improving later life health

Improvements in health care, sanitation, and diet over last 100 years have significantly increased life expectancy. However, this increase in how long we can expect to live has not been accompanied by a similar increase in healthy life expectancy, defined as the time spent free of major illness or disease.