Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A team of international researchers at the University of Oxford (Oxford) and Nanyang Technological University, Singapore (NTU Singapore), has discovered a new process for repairing damaged DNA that is particularly relevant for patients undergoing colorectal cancer treatments.

Blue DNA chain

Reporting their finding in Cell, the researchers describe a new process in DNA repair in which cells remove harmful DNA-protein lesions from a cell’s nucleus, ensuring the stability of their genetic material and promoting cell survival. The team calls this new process nucleophagy.

Nucleophagy is a natural cellular cleaning mechanism known as autophagy that is essential for repairing DNA and ensuring cell survival. It involves a commonly expressed protein called TEX264.

In a patient receiving chemotherapy for colorectal cancer, the drugs cause DNA lesions to form. In response, the body expresses TEX264, which activates the nucleophagy process, guiding the lesions to the cell’s waste disposal system, where they are broken down and destroyed.

The research team used advanced techniques, including biochemical, cell biological and bioinformatics tools, zebrafish animal model and colorectal cancer patient materials, to confirm that nucleophagy is crucial for repairing damaged DNA.

 

Read the full story on the University of Oxford website.