Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

One of the world’s largest efforts to find effective COVID-19 treatments will evaluate the impact of REGN-COV2 on mortality, hospital stays, and the need for ventilation.

pipette dropping a transparent liquid in a petri dish

Regeneron Pharmaceuticals, Inc. and the University of Oxford today announced that RECOVERY (Randomised Evaluation of COVid-19 thERapY), one of the world’s largest randomised clinical trials of potential COVID-19 treatments, will evaluate Regeneron’s investigational anti-viral antibody cocktail, REGN-COV2. The Phase 3 open-label trial in patients hospitalised with COVID-19 will compare the effects of adding REGN-COV2 to the usual standard-of-care versus standard-of-care on its own.

Peter Horby, Professor of Emerging Infectious Diseases and Global Health, Nuffield Department of Medicine, University of Oxford and chief investigator of the trial, said, 'We have already discovered that one treatment, dexamethasone, benefits COVID-19 patients, but the death rate remains too high so we must keep searching for others. The RECOVERY trial was specifically designed so that when promising investigational drugs such as REGN-COV2 became available they can be tested quickly. We are looking forward to seeing whether REGN-COV2 is safe and effective in the context of a large-scale randomised clinical trial; this is the only way to be certain about whether it works as a treatment for COVID-19.'

The full story is available on the RECOVERY Trial website

The story is also featured on the University of Oxford website

Similar stories

New form of gift wrap drives male reproductive success

General Research

A study from the Department of Physiology, Anatomy and Genetics (DPAG) has identified a new communication mechanism that ensures the transfer of a complex mix of signals and nutrients required for successful reproduction between males and females.

PRINCIPLE trial finds antibiotics azithromycin and doxycycline not generally effective treatments for COVID-19

Coronavirus COVID-19 General Research

In March 2020, the UK-wide Platform Randomised trial of INterventions against COVID-19 In older people (PRINCIPLE) trial was established as a flexible, platform randomised clinical trial to test a range of potential treatments for COVID-19 that might be suitable for use in the community to help people recover more quickly and prevent the need for hospital admission. The trial is one of three national platform trials for COVID-19 treatments, and complements the RECOVERY and REMAP-CAP trials that focus on hospitalised patients.

Early animal studies yield promising results for new potential COVID-19 vaccine

Coronavirus COVID-19 General Research

Studies carried out in the MRC Human Immunology Unit (MRC HIU) in collaboration with the Pirbright Institute have shown that a new potential vaccine against COVID-19, named RBD-SpyVLP, produces a strong antibody response in mice and pigs, providing vital information for the further development of the vaccine. Although this type of vaccine is not a competitor for the first wave of vaccines, it is hoped that it will be useful as a standalone vaccine or as a booster for individuals primed with a different COVID-19 vaccine.

Just over half of British Indians would take COVID vaccine

Coronavirus COVID-19 General Research

University of Oxford researchers from the Department of Physiology, Anatomy and Genetics (DPAG) and the Department of Psychiatry, in collaboration with The 1928 Institute, have published a major new study on the impact of COVID-19 on the UK’s largest BME population.

Investigating New Treatment for Schizophrenia

General Innovation Research

A partnership between University of Oxford, the Earlham Institute, and the global pharmaceutical companies Biogen Inc and Boehringer Ingelheim is announced today to investigate a new drug target for the treatment of schizophrenia.