Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A team at Bristol University has used recently developed techniques to validate that the vaccine accurately follows the genetic instructions programmed into it by the Oxford team.

Vaccine vile and syringe

The AstraZeneca Oxford COVID-19 vaccine (ChAdOx1 nCoV-19 and also known as AZD1222) now undergoing Phase III clinical trials, has already undergone rigorous testing to ensure the highest standards of quality and safety. Now a team at Bristol University has used recently developed techniques to further validate that the vaccine accurately follows the genetic instructions programmed into it by the Oxford team. This novel analysis provides even greater clarity and detail about how the vaccine successfully provokes a strong immune response. 

The findings, led by scientists at the University of Bristol and published on the pre-print server ResearchSquare, represent the most in-depth analysis of any of the COVID-19 vaccine candidates, going significantly above and beyond any regulatory requirements anywhere in the world.

Work on the vaccine, developed by researchers at the University of Oxford’s Jenner Institute and Oxford Vaccine Group, began in January 2020. Now undergoing Phase III clinical trials by the University of Oxford and AstraZeneca, the Bristol researchers’ focus was to assess how often and how accurately the vaccine is copying and using the genetic instructions provided by the Oxford team. These instructions detail how to make the spike protein from the coronavirus, SARS-CoV-2 that causes COVID-19.

The full story is available on the University of Oxford website

Similar stories

Communication at the crossroads of the immune system

In his inaugural article in the Proceedings of the National Academy of Sciences as an NAS member (elected 2021), Prof Mike Dustin and his research team in Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences have explained how messages are passed across the immunological synapse. The research could have implications for future vaccine development and immunotherapy treatments.

Oxford spinout trials revolutionary bioelectronic implant to treat incontinence

The first participants in a clinical trial of a bioelectrical therapy to treat incontinence have received their “smart” bioelectronic implants.

COVID-19 is a leading cause of death in children and young people in the US

A new study led by researchers at the University of Oxford’s Department of Computer Science has found that, between 2021 and 2022, COVID-19 was a leading cause of death in children and young people in the United States, ranking eighth overall. The results demonstrate that pharmaceutical and public health interventions should continue to be applied to limit the spread of the coronavirus and protect again severe disease in this age group.

Three or more concussions linked with worse brain function in later life

Experiencing three or more concussions is linked with worsened brain function in later life, according to new research.

New blood test could save lives of heart attack victims

Researchers in the Department of Physiology, Anatomy and Genetics (DPAG) have developed a blood test that measures stress hormone levels after heart attacks. The test – costing just £10 – could ensure patients receive timely life-saving treatment.

COVID-19 increased public trust in science, new survey shows

A survey of over 2000 British adults has found that public trust in science, particularly genetics, increased significantly during the pandemic. However, those with extremely negative attitudes towards science tend to have high self-belief in their own understanding despite low textbook knowledge.