Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A collaborative research team from the Universities of Oxford and Cambridge, co-led by Department of Physiology, Anatomy & Genetics Associate Professor Ana Domingos, have developed a new weight-loss amphetamine that could potentially avoid the harmful side effects of traditional treatments.

© CireniaSketches

Obesity is a major health issue across the world and is implicated in many serious health conditions such as diabetes, heart disease and cancer. Despite being officially declared a chronic disease, there are very few long-lasting and cost-effective treatments for obesity. Historically, amphetamine (AMPH) class drugs have been some of the most popular anti-obesity drugs to be prescribed and are widely considered to be the most effective while also being among the cheapest to produce. They work in the brain to reduce appetite and increase locomotion or stamina. However, these drugs are also known for strongly activating the sympathetic nervous system, the peripheral part of the nervous system known to accelerate the heart rate, constrict blood vessels and raise blood pressure. Consequently, they can present side effects such as dangerously increased heart rate and hypertension.  

A research team led by Department of Physiology, Anatomy & Genetics Associate Professor Ana Domingos and Dr Gonçalo Bernardes (University of Cambridge) suspected that the cardiac side effects of amphetamines could originate in the brain. If this was the case, they hypothesised that if they could design a drug that did not pass the blood-brain barrier, they could avoid these unwanted outcomes, while perhaps retaining an anti-obesity action. In a new paper published in Cell Metabolism, the team have shown that the cardiac side effects of AMPH do indeed originate in the brain and have presented a modified amphetamine that does not enter the brain while avoiding its known side effects.

Read the full story on the Department of Physiology, Anatomy & Genetics website

Similar stories

New computational technique reveals changes to lung function post COVID-19 infection

A new study led by Oxford researchers found that prior COVID-19 infection was associated with more uneven inflation of the lungs during normal breathing, smaller lung volumes, and greater respiratory dead space.

Oxford spinout Optellum secures $14m funding to advance pioneering AI-powered lung cancer diagnosis technology

Optellum, a University of Oxford spinout that provides a breakthrough AI platform to diagnose and treat early-stage lung cancer, has raised $14 million in a Series A funding round.

Celebrating Childhood Cancer Awareness Month

September was Childhood Cancer Awareness Month, and researchers in Department of Paediatrics took action to help raise awareness for this cause.

New study shows higher rate of fractures in people with intellectual disability

In the most comprehensive study of its kind, researchers at the University of Oxford and Oxford Health NHS Foundation Trust found a substantially higher rate of fractures in people with intellectual disability compared with people of the same age and gender without an intellectual disability.

New evidence for how our brains handle surprise

A new study from the Bruno Group is challenging our perceptions of how the different regions of the cerebral cortex function. A group of ‘quiet’ cells in the somatosensory cortex that rarely respond to touch have been found to react mainly to surprising circumstances. The results suggest their function is not necessarily driven by touch, but may indicate an important and previously unidentified role across all the major cortices.