Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Research by the Wellcome Centre for Integrative Neuroimaging has identified two distinct parts of the human brain - the neocortex and the hippocampus (a part of the brain involved in higher-order brain functions) - which protect our memories from interfering with one another.

MRI scan of the brain © Shutterstock

Researchers from the Wellcome Centre for Integrative Neuroimaging have shed light on the exact neural mechanisms that make precise memory recall possible.

The research team gave participants memory tasks to perform in the MRI scanner. Over two days participants learned two overlapping but context-dependent memories. The researchers then measured interference between the two memories on the third day in the scanner.

The findings suggest that at least two different brain regions are involved in mediating memory interference. First, the hippocampus (part of the brain involved in higher-order brain functions) separates overlapping memories using contextual-information.

Read more (University of Oxford website)

Similar stories

Oxford vaccine reaches one billion doses released

The University of Oxford’s and our partners AstraZeneca have today announced that one billion doses of the ChAdOx1 nCov-19 coronavirus vaccine have been released, to more than 170 countries, marking a key milestone as part of the University and AstraZeneca’s joint vision to make the available to the world, on a not-for-profit basis for the world during the pandemic, and in perpetuity for low- and middle-income countries.

Phase I trial begins of new vaccine against the Plague

Researchers at the University of Oxford today launched a Phase 1 trial to test a new vaccine against plague.

New therapeutic targets identified in the treatment of psoriatic arthritis

Researchers identify two inflammatory-driving proteins, osteopontin and CCL2, highly expressed in psoriatic arthritis joints.

Treatment choice for rotator cuff disorders could create efficiency and savings for the NHS

A trial that evaluated the clinical and cost effectiveness of physiotherapy treatments for rotator cuff disorders suggests cost savings can be made while maintaining positive patient outcomes.

Neutrophil molecular wiring revealed: transcriptional blueprint of short-lived cells

Researchers publish the first blueprint of transcriptional factors that control neutrophil-driven inflammation in Nature Immunology.