Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

A study published in the journal Nature Genetics used genetic data from nearly a million people across Europe and North America to highlight some of the key ways in which type 2 diabetes develops, and to find several genes which could be attractive targets for the creation of new therapeutic drugs.

Image courtesy of Shutterstock

Together with colleagues from a global consortium of scientists, researchers from the Radcliffe Department of Medicine and the Wellcome Centre for Human Genetics at Oxford University analysed nearly 20 trillion data points to produce the most comprehensive catalogue so far of the places within the human genome where DNA sequence changes alter a person’s risk of developing Type 2 diabetes.

Diabetes occurs when the body’s ability to produce or respond to the hormone insulin is impaired, leading to elevated levels of glucose in the blood. Type 1 diabetes usually starts in childhood and is due to permanent loss of the beta cells in the pancreas that produce insulin. Type 2 diabetes typically develops later in life, and a person’s risk depends on the combination of genetic and lifestyle factors (such as diet and exercise, through their impact on a person’s weight).

Find out more (University of Oxford website)

Similar stories

Five ways the pandemic has affected routine medical care

Since the beginning of the pandemic, COVID has infected at least a third of the UK population and is estimated to have factored in the deaths of almost 200,000 people in the UK. But critically, COVID has also had a devastating impact on our healthcare systems. While this was expected, new evidence is beginning to reveal the scope of the issue – in particular the effects for people living with long-term health conditions.

Clinical trials for a malaria vaccine start in Mali and Indonesia

Sanaria Inc. announced that two new Phase 2 trials of its pioneering malaria vaccines have started. The first is in 6- to 10-year-old children living in Bancoumana, Mali, a malarious region of West Africa. The second is in Indonesian soldiers based in Sumatra, Indonesia. The soldiers will be deploying for six to nine months this coming August to an intensely malarious district in eastern Indonesia.

Researchers discover novel form of adaptation in the auditory system

Researchers in the Department of Physiology, Anatomy and Genetics (DPAG) have found that the auditory system adapts to the changing acoustics of reverberant environments by temporally shifting the inhibitory tuning of cortical neurons to remove reverberation.

20 minutes of daily exercise can keep teens' doctors away

Teenagers should exercise vigorously for at least 20 minutes per day to reap increased cardiorespiratory fitness (CRF), according to a cross-sectional study from the UK led by University of Oxford researchers.

Mechanism of expanding bacteria revealed

A new study published in Nature has identified a potential Achilles heel in the protective layers surrounding Gram-negative bacteria that could aid in the development of next-generation antibiotics.

Discovery of gene involved in chronic pain creates new treatment target

Oxford researchers have discovered a gene that regulates pain sensitisation by amplifying pain signals within the spinal cord, helping them to understand an important mechanism underlying chronic pain in humans and providing a new treatment target.