Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Scientists at the University of Oxford have identified a gene that in women is linked to the creation and location of new fat cells and in turn contributes to an increased risk of type 2 diabetes.

Published in Nature Genetics, the paper examined the effect of a gene called KLF14. The researchers found that genetic variations that control KLF14 have little impact on overall weight but they have a marked impact on where in the body any excess fat is stored. In women, versions of the gene that are result in fat being preferentially deposited around the hips, rather than around the abdomen, provide protection against diabetes.

The different variations of KLF14 have an impact on the development of fat cells, and a striking effect on their size. In women carrying the version of the KLF14 gene that is associated with increased risk of diabetes, the individual fat cells are much larger and full of fat. This is likely to because there are fewer such cells in the first place, such that each cell ends up needing to take up more fat. This is known to result in inefficient, unhealthy fat cells that are more likely to contribute to diabetes.

Find out more (University of Oxford website)

Similar stories

Meta must do better - data from social media giant essential to mental health research

People are rightly sceptical about scientific discoveries made in secret or without scrutiny. And anyone claiming to have found a new planet with a toy telescope, would not be taken seriously. Recent leaks of internal Facebook research on the mental health of children and young people have caused a great stir on both sides of the Atlantic.

New research highlights importance of early years development on future wellbeing

Oxford researchers involved nearly 4,000 children across the UK in three specially developed science lessons to educate pupils about brain development during early childhood. The SEEN (Secondary Education around Early Neurodevelopment) project was commissioned and funded by KindredSquared and is part of a wider drive to increase public understanding of how early experiences can shape the adults we become.

Study reveals ‘stop-eating’ response to DNA damage

A new study from the MRC Weatherall Institute of Molecular Medicine sheds light on the mechanism by which DNA damage suppresses appetite, a finding with implications for understanding the appetite lowering side-effects of chemotherapy.

World’s first cancer prevention trial to test diabetes drug in patients with high-risk genetic condition

Oxford researchers will lead a £2m national cancer prevention trial to assess the benefit a diabetes drug has in patients with Li Fraumeni Syndrome (LFS), a genetic condition that impacts 1 in 20,000 people worldwide and puts them at a 70-90% lifetime risk of cancer.

Oxford-led research maps milestone stage of human development for the first time

Scientists have shed light on an important stage of early embryonic development that has never been fully mapped out in humans before.