Up until now, widely held notions made in comparison to how the adult liver controls iron in the body have led to a common focus on how maternal iron status and function of the placenta determines a baby's iron status. A new study from the Lakhal-Littleton research group in the Department of Physiology, Anatomy & Genetics reveals a more autonomous process takes place within the fetus than previously understood.
Historically, research into iron has focused on its role in the synthesis of haemoglobin, the substance in red blood cells that carries oxygen from your lungs throughout your body. However, in recent years evidence has been uncovered that iron plays an important role in many other physiological processes. For example, iron deficiency has been shown to impair cardiovascular function independently of haemoglobin levels in key Lakhal-Littleton lab papers in eLife and PNAS. In infancy, iron deficiency is associated with growth retardation and both motor skill and cognitive defects, because iron is required for the synthesis of myelin, an essential component of neurons, and also for rapid bone and muscle growth during childhood. While it is known that a liver-derived hormone called Hepcidin is responsible for regulating iron in the body, what is not well understood is the role it plays in the development of the unborn baby during pregnancy.
Read more on the Department of Physiology, Anatomy & Genetics website