Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Antibiotic treatment in early life seems to impede brain signalling pathways that function in social behaviour and pain regulation in mice, a new study by Dr Katerina Johnson and Dr Philip Burnet has found. It was published today in BMC Neuroscience.

Test tubes © Shutterstock

Katerina Johnson, from the University's Departments of Psychiatry and Experimental Psychology, was researching the effects of disrupting the microbiome on the brain in mice. 'We know from previous research that animals missing microbes, such as germ-free animals (which are devoid of microbes) or antibiotic-treated animals (whose microbes are severely depleted), have impaired social behaviour,' she explains. 'I was therefore particularly interested in the effects of the microbiome on endorphin, oxytocin and vasopressin signalling since these neuropeptides play an important role in social and emotional behaviour.'

Read the full article (University of Oxford website)

Similar stories

Decoding the interplay between genes and mechanics in tissues at single-cell resolution

Researchers at the Kennedy Institute have developed a new computational framework that allows simultaneous analysis of gene expression and mechanical forces within cells and tissues, uncovering insights into how the interplay between transcriptional and mechanical signals guides processes such as cell fate decisions or the formation of spatially distinct tissue compartments.