Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Interdepartmental strategic

  • Establishing a cross departmental Global Health Systems Group: Mike English. Addressing an unmet need, this project is set to have beneficial effect in the short term as well as strategic value in relation to GCRF and Global Health calls through enhanced communications strategies.
  • Exploring the potential for Behavioural Activation to facilitate successful economic transitions for adolescents in LMICs: Stefan Dercon. Strategically important project resonating with other funding to set up a research stream to explore whether psychological therapies can be applied to LMIC communities with high levels of socio-economic and other adversity to impact key life outcomes.
  • Matrix Assisted Laser Desorption Ionisation Mass Spectrometry (MALDI) with imaging capability: James McCullagh. Strategic investment in research assets to support research from six University departments across a range of fields, including epigenetics, drug development, and imaging;  bringing new capability in mass spectrometric-based imaging to Oxford and underpinning future grant applications in the fields of epigenetics, diagnostics, anti-infectives, cancer, cardiovascular diseases, and inflammatory diseases.
  • The Oxford Quantitative Biology Training Programme: Doug Higgs. Cross-departmental and cross-disciplinary collaboration to leverage the enormous power, widespread availability and decreasing cost of big data technologies across computational and statistical contexts in medical sciences, to generate enhanced skillsets, best working practices and exchange of expertise in computational biology.
  • China-Oxford collaboration on emerging infections: Peter Horby. Initiative to enhance the potential for very significant impact from collaborations between University departments and the Chinese Centres for Disease Control.

Individual Career Support

  • Neurocomputational mechanisms of motivational impairments in Parkinson's Disease: Matthew Apps. Project paving the way for major future initiatives by this researcher, linking basic and in vivo neuroscience, computational neuroscience and clinical study across multiple University departments.
  • Measuring three-dimensional high-speed nanoscale forces during T-cell activation: Marco Fritzsche. Exciting technology and a collaboration with Janelia Farm (USA) as well as several University departments, seeks to characterize physical forces in action during T-cell activation, in a highly novel interaction between the physical and biomedical arenas.
  • The role of High Mobility Group Nucleosomal Binding Protein 1 in the regulation of urinary calcium: Sarah Howles. Support for Early Career Clinical Academic’s project will aid investigation of genetic factors contributing to idiopathic hypercalciuria, key to improvement of the understanding of kidney stone disease - a condition affecting up to 20% of the population at some stage during their lifetime - and its prevention.
  • Central nervous system autoimmunity: understanding how pathogenic T cells evade central and peripheral tolerance: Adam Handel.. This strategically important work by an Early Career Clinical Academic supports a range of activity relating to neurological disease and its ultimate clinical and societal burden, with a focus on the study of inflammation and seeking to design improved future treatments through fluorescence activated cell sorting, sequencing and bioinformatics initiatives.
  • Structure, function and translation of the REST complex in human disease: Bass Hassan. Career transformation investment with co-applicant support from Professor Susan Lea of the Structural Microscopy Imaging Centre with fundamental importance across departments in the Medical Sciences Division. This applicant’s placement, across both structural and functional biology, provides an unique and immediate opportunity for translation of the science that fully and vitally exploits the Wellcome Trust infrastructure.
  • Endotyping asthma: functional location of airway inflammation: Grant Ritchie. Interdisciplinary project utilising trace gas detection in work towards construction of a prototype real-time instrument aiding clinicians in asthma diagnosis by an applicant who previously developed a novel diode laser-based bronchoscope.
  • Development of long-lived fluorescent dyes for gated STED microscopy: Robert Edkins. Project from an Early Career Researcher to develop bespoke dyes that will enable biologists to take full advantage of the new developments in fluorescence microscopy. The Co-I, facility manager of the Wolfson Imaging Centre, will collaborate to ensure the work is highly relevant to the needs of microscope users.
  • Whole-genome sequencing M. tuberculosis in a remote, highburden setting: Timothy Walker. Working with an international collaborator to acquire vital sequencing data in Madagascar on M.tuberculosis using a portable system, with the intention of passing on for local use. This would enhancing responses to predicted multiple circulating clones of the disease and providing a seminal boost to WHO objectives.
  • Augmenting brain plasticity via dietary intervention: Jacinta O'Shea. Collaboration across neuroscience departments developing, in combination with electrical brain stimulation, dietary interventions following brain injury as a preferred strategy to contraindicated current pharmacological interventions.

Translational Research

  • EMD Millipore Collaboration: Redevelopment of Adenoviral Vector Upstream Production Platform. Philip Angell-Manning. Initiative to establish collaboration between the Jenner Institute and EMD Millipore to create a scaleable, industrially-compatible cellular manufacturing process for Adenovirus, suitable for use in clinical vaccine manufacture.
  • GaitThaw: helping people with Parkinson’s disease walk. James Cantley. A novel approach addressing the impairment of ability to control movement in people with neurological disorders, including Parkinson’s Disease, which affects 10 million people worldwide.