Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Alberto Lazari of the Nuffield Department of Clinical Neurosciences explains the importance of insulation in our brains' wiring.

Human brain digital illustration, showing eectrical activity, flashes and lightning on a blue background

Our brains contain a striking amount of ‘brain wires’, which allow electrical signals to send important information from one corner of the brain to another. Although these brain wires are made up of biological material, they also bear surprising resemblances to the electrical wires you can see when you do a DIY job in your home. For instance, one key feature that allows the brain wires to work is that they are tightly insulated. A little bit like metal wires are coated with plastic, brain wires are also wrapped in an insulation material, called ‘myelin’. Myelin is essentially a fatty layer of insulation, wrapped around many of the wires in your brain.

Myelin is incredibly important. When this insulation layer breaks down, the brain struggles to transmit signals at its usual speed, which is what happens in conditions like multiple sclerosis. However, the insulation of brain wiring has often been overlooked by scientists. It is particularly difficult to measure non-invasively in a live human. On top of that, this insulation has long been considered a static part of the brain which is not particularly relevant to understanding the brains of healthy adults. While myelin is clearly important in multiple sclerosis, until recently very few scientists had studied myelin beyond the realm of disease.

However, recent studies have now called some assumptions about myelin into question. In particular, in the past decade many labs around the world, including here at Oxford, have shown that myelin is more complex and dynamic than previously thought. Ground-breaking new methods have also been developed to effectively measure fat-rich insulation through magnetic resonance imaging (MRI), allowing us to ask new questions about this ever-elusive insulation layer that envelops our brain wiring.

Read the full article on the University of Oxford website

Similar stories

Communication at the crossroads of the immune system

In his inaugural article in the Proceedings of the National Academy of Sciences as an NAS member (elected 2021), Prof Mike Dustin and his research team in Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences have explained how messages are passed across the immunological synapse. The research could have implications for future vaccine development and immunotherapy treatments.

Oxford spinout trials revolutionary bioelectronic implant to treat incontinence

The first participants in a clinical trial of a bioelectrical therapy to treat incontinence have received their “smart” bioelectronic implants.

COVID-19 is a leading cause of death in children and young people in the US

A new study led by researchers at the University of Oxford’s Department of Computer Science has found that, between 2021 and 2022, COVID-19 was a leading cause of death in children and young people in the United States, ranking eighth overall. The results demonstrate that pharmaceutical and public health interventions should continue to be applied to limit the spread of the coronavirus and protect again severe disease in this age group.

Three or more concussions linked with worse brain function in later life

Experiencing three or more concussions is linked with worsened brain function in later life, according to new research.

New blood test could save lives of heart attack victims

Researchers in the Department of Physiology, Anatomy and Genetics (DPAG) have developed a blood test that measures stress hormone levels after heart attacks. The test – costing just £10 – could ensure patients receive timely life-saving treatment.

COVID-19 increased public trust in science, new survey shows

A survey of over 2000 British adults has found that public trust in science, particularly genetics, increased significantly during the pandemic. However, those with extremely negative attitudes towards science tend to have high self-belief in their own understanding despite low textbook knowledge.