Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

New research from the Kennedy Institute of Rheumatology (Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences) identifies vascular attrition, marked by pericyte to fibroblast differentiation, as a primary hallmark of ageing and highlights organ-specific vascular changes with age.

A montage of images showing 3D scans of mouse spleens and kidneys
From left to right 1 - Tile scan 3D confocal image showing a mouse spleen with multicolour immunolabeling for endothelial cell and pericyte markers. Blue shows cell nuclei stained with TO-PRO-3. 2 - Tile scan 3D confocal image showing a mouse spleen with multicolour immunolabeling for endothelial cell and pericyte markers. 3 - Tile scan 3D confocal image showing a mouse kidney with multicolour immunolabeling for endothelial cell and pericyte markers. Blue shows cell nuclei stained with TO-PRO-3. 4 - Tile scan 3D confocal image showing a mouse kidney with multicolour immunolabeling for endothelial cell and pericyte markers.

Cellular and physiological activity in the body declines over time with age, resulting in a loss of tissue and organ function and the potential risk of major health conditions such as cancer or cardiovascular disease. What is less understood are age-related changes in the tissue microenvironment such as the blood vessels.

Blood vessels are an essential component in maintaining tissue function not only because they form vital transport routes around the body, but also because blood vessels engage in signalling with neighbouring cells within the tissues thereby governing their behaviour. For example, blood vessels provide nurturing niches for stem/progenitor cells and regulate their stemness and fate. Therefore, any vascular changes have the potential to reveal microenvironmental triggers impacting the aging process.

For the study which appears in Science Advances Anjali Kusumbe’s group examined 1000’s of confocal images across several murine and human organs. “The cellular aspects of ageing have been extensively studied and we understand how they affect tissue function. Our goal was to understand age-related changes to blood vessels, the vascular system, by comparing young and ageing tissues from several organs through 3D imaging.” said Anjali.

3D imaging showed the vascular microenvironments of the kidney, muscle, spleen, thymus, liver, lung, uterus, heart, bladder, brain, skin, and the gut. By comparing young and ageing tissues from several organs the study revealed a loss of vascular abundance and differentiation of pericytes into fibroblasts as the key features of ageing tissue. Pericytes are the cells lining the blood vessels and support vascular functions while fibroblasts are known drivers for disease conditions such as fibrosis and arthritis.

Read the full story on the Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences website.

Similar stories

Long COVID: vaccination could reduce symptoms, new research suggests

While evidence suggests that people who are vaccinated before they get COVID are less likely to develop long COVID than unvaccinated people, the effectiveness of vaccination on existing long COVID has been less clear.

Com-COV vaccine study to research third dose booster options for 12-to-15-year-olds

Researchers running the University of Oxford-led Com-COV programme have launched a further study of COVID-19 vaccination schedules in young people aged 12 to 15 – with a focus on assessing different options for a third dose booster vaccination.

Population-scale study highlights ongoing risk of COVID-19 in some cancer patients despite vaccination

COVID-19 vaccination is effective in most cancer patients, but the level of protection against COVID-19 infection, hospitalisation and death offered by the vaccine is less than in the general population and vaccine effectiveness wanes more quickly.

New reporting guidelines developed to improve AI in healthcare settings

New reporting guidelines, jointly published in Nature Medicine and the BMJ by Oxford researchers, will ensure that early studies on using Artificial Intelligence (AI) to treat real patients will give researchers the information needed to develop AI systems safely and effectively.

Major boost for Oxford’s mission to counter future pandemic threats

The Moh Family Foundation has given a substantial gift to support the work of Oxford University’s Pandemic Sciences Institute, greatly strengthening its ability to identify and counter future pandemic threats and ensure equitable access to treatments and vaccines around the world.