Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

New research from the Kennedy Institute of Rheumatology (Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences) identifies vascular attrition, marked by pericyte to fibroblast differentiation, as a primary hallmark of ageing and highlights organ-specific vascular changes with age.

A montage of images showing 3D scans of mouse spleens and kidneys
From left to right 1 - Tile scan 3D confocal image showing a mouse spleen with multicolour immunolabeling for endothelial cell and pericyte markers. Blue shows cell nuclei stained with TO-PRO-3. 2 - Tile scan 3D confocal image showing a mouse spleen with multicolour immunolabeling for endothelial cell and pericyte markers. 3 - Tile scan 3D confocal image showing a mouse kidney with multicolour immunolabeling for endothelial cell and pericyte markers. Blue shows cell nuclei stained with TO-PRO-3. 4 - Tile scan 3D confocal image showing a mouse kidney with multicolour immunolabeling for endothelial cell and pericyte markers.

Cellular and physiological activity in the body declines over time with age, resulting in a loss of tissue and organ function and the potential risk of major health conditions such as cancer or cardiovascular disease. What is less understood are age-related changes in the tissue microenvironment such as the blood vessels.

Blood vessels are an essential component in maintaining tissue function not only because they form vital transport routes around the body, but also because blood vessels engage in signalling with neighbouring cells within the tissues thereby governing their behaviour. For example, blood vessels provide nurturing niches for stem/progenitor cells and regulate their stemness and fate. Therefore, any vascular changes have the potential to reveal microenvironmental triggers impacting the aging process.

For the study which appears in Science Advances Anjali Kusumbe’s group examined 1000’s of confocal images across several murine and human organs. “The cellular aspects of ageing have been extensively studied and we understand how they affect tissue function. Our goal was to understand age-related changes to blood vessels, the vascular system, by comparing young and ageing tissues from several organs through 3D imaging.” said Anjali.

3D imaging showed the vascular microenvironments of the kidney, muscle, spleen, thymus, liver, lung, uterus, heart, bladder, brain, skin, and the gut. By comparing young and ageing tissues from several organs the study revealed a loss of vascular abundance and differentiation of pericytes into fibroblasts as the key features of ageing tissue. Pericytes are the cells lining the blood vessels and support vascular functions while fibroblasts are known drivers for disease conditions such as fibrosis and arthritis.

Read the full story on the Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences website.

Similar stories

Oxford spinout trials revolutionary bioelectronic implant to treat incontinence

The first participants in a clinical trial of a bioelectrical therapy to treat incontinence have received their “smart” bioelectronic implants.

COVID-19 is a leading cause of death in children and young people in the US

A new study led by researchers at the University of Oxford’s Department of Computer Science has found that, between 2021 and 2022, COVID-19 was a leading cause of death in children and young people in the United States, ranking eighth overall. The results demonstrate that pharmaceutical and public health interventions should continue to be applied to limit the spread of the coronavirus and protect again severe disease in this age group.

Three or more concussions linked with worse brain function in later life

Experiencing three or more concussions is linked with worsened brain function in later life, according to new research.

New blood test could save lives of heart attack victims

Researchers in the Department of Physiology, Anatomy and Genetics (DPAG) have developed a blood test that measures stress hormone levels after heart attacks. The test – costing just £10 – could ensure patients receive timely life-saving treatment.

COVID-19 increased public trust in science, new survey shows

A survey of over 2000 British adults has found that public trust in science, particularly genetics, increased significantly during the pandemic. However, those with extremely negative attitudes towards science tend to have high self-belief in their own understanding despite low textbook knowledge.

Gero Miesenböck awarded 2023 Japan Prize

Congratulations to Professor Gero Miesenböck, Department of Physiology, Anatomy and Genetics (DPAG), who has been awarded the 2023 Japan Prize in the field of Life Sciences, together with Professor Karl Deisseroth, for pioneering work in the field of optogenetics.