Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

New research from the Kennedy Institute of Rheumatology (Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences) identifies vascular attrition, marked by pericyte to fibroblast differentiation, as a primary hallmark of ageing and highlights organ-specific vascular changes with age.

A montage of images showing 3D scans of mouse spleens and kidneys
From left to right 1 - Tile scan 3D confocal image showing a mouse spleen with multicolour immunolabeling for endothelial cell and pericyte markers. Blue shows cell nuclei stained with TO-PRO-3. 2 - Tile scan 3D confocal image showing a mouse spleen with multicolour immunolabeling for endothelial cell and pericyte markers. 3 - Tile scan 3D confocal image showing a mouse kidney with multicolour immunolabeling for endothelial cell and pericyte markers. Blue shows cell nuclei stained with TO-PRO-3. 4 - Tile scan 3D confocal image showing a mouse kidney with multicolour immunolabeling for endothelial cell and pericyte markers.

Cellular and physiological activity in the body declines over time with age, resulting in a loss of tissue and organ function and the potential risk of major health conditions such as cancer or cardiovascular disease. What is less understood are age-related changes in the tissue microenvironment such as the blood vessels.

Blood vessels are an essential component in maintaining tissue function not only because they form vital transport routes around the body, but also because blood vessels engage in signalling with neighbouring cells within the tissues thereby governing their behaviour. For example, blood vessels provide nurturing niches for stem/progenitor cells and regulate their stemness and fate. Therefore, any vascular changes have the potential to reveal microenvironmental triggers impacting the aging process.

For the study which appears in Science Advances Anjali Kusumbe’s group examined 1000’s of confocal images across several murine and human organs. “The cellular aspects of ageing have been extensively studied and we understand how they affect tissue function. Our goal was to understand age-related changes to blood vessels, the vascular system, by comparing young and ageing tissues from several organs through 3D imaging.” said Anjali.

3D imaging showed the vascular microenvironments of the kidney, muscle, spleen, thymus, liver, lung, uterus, heart, bladder, brain, skin, and the gut. By comparing young and ageing tissues from several organs the study revealed a loss of vascular abundance and differentiation of pericytes into fibroblasts as the key features of ageing tissue. Pericytes are the cells lining the blood vessels and support vascular functions while fibroblasts are known drivers for disease conditions such as fibrosis and arthritis.

Read the full story on the Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences website.

Similar stories

PRINCIPLE Covid-19 treatments trial widens to under 50s and adds colchicine

Clinical Trials Coronavirus COVID-19 General Research

From today, the UK’s national priority platform trial of Covid-19 treatments for recovery at home launches its investigation of the gout drug colchicine, and expands for the first time to include adults of any age.

Regular meat consumption linked with a wide range of common diseases

Research

Regular meat consumption is associated with a range of diseases that researchers had not previously considered, according to a large, population-level study conducted by a team at the University of Oxford.

New data show vaccines reduce severe COVID-19 in older adults

Coronavirus COVID-19 Research

New data show both Oxford / AstraZeneca vaccine and the Pfizer-BioNTech vaccines significantly reduce severe COVID-19 in older adults.

Singula Bio, a new Oxford spin-out company - Cancer need not be fatal

General Innovation Research

Singula Bio, a bold new seed-stage biotechnology company spun out of Oxford University, has been launched with the intention of helping show that cancer need not be fatal. Led by three Oxford cancer specialists, the firm is aims to become a world leader in therapies to use against difficult-to-treat solid malignancies such as ovarian cancer - using the body’s own immune system to fight previously fatal cancers.

Major rise in public support for COVID vaccine – Oxford study

Coronavirus COVID-19 General Research

More than three quarters of people in the UK now say they are ’very likely’ to have the vaccine – up from 50% among the same group of survey respondents five months ago –according to a two-wave Oxford University survey published today.