Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

A collaborative study led by Oxford Parkinson’s Disease Centre has shown that compounds known as molecular tweezers could become a promising disease modifying therapy for Parkinson’s.

Automated rendering of microscopic neural compounds

A team of researchers has shown that tiny compounds known as molecular “tweezers” could become a promising therapy to slow Parkinson’s. This new kind of drug works by pulling apart toxic clumps of protein that form in the brain during Parkinson’s.

The therapy has previously shown high potential for targeting toxic protein clumps that form in neurodegenerative conditions such as Alzheimer’s. The research teams therefore investigated whether a particular molecular tweezer, CLR01, was able to reduce formation of protein clumps in cell and mouse models of Parkinson’s.

The research was led by the Oxford Parkinson’s Disease Centre at the University of Oxford, created through funding from Parkinson’s UK, and supported by the Medical Research Council with collaborators from the University of Bordeaux, the Universidad del País Vasco and the University of California.

The full story is available on the Department of Physiology, Anatomy & Genetics website

Similar stories

New book expands the horizons of brain research

A pioneering book from Professor Zoltán Molnár and Yale Professors Tamas Horvath and Joy Hirsch to be released on 1 February 2022 addresses the fundamental relationship between the body, brain and behaviour.

New research sheds light on how ultrasound could be used to treat psychiatric disorders

A new study in macaque monkeys has shed light on which parts of the brain support credit assignment processes (how the brain links outcomes with its decisions) and, for the first time, how low-intensity transcranial ultrasound stimulation (TUS) can modulate both brain activity and behaviours related to these decision-making and learning processes.

Dramatic fall in hospital admissions for child infections since start of Covid-19 pandemic

Since the onset of the Covid-19 pandemic, there have been dramatic reductions in hospital admissions for common and severe childhood infections in England, most likely due to social distancing measures, school and workplace closures, and travel restrictions, finds a study published by The BMJ today.

Rosalind Franklin Institute and Pharmacology announce strategic partnership in Next Generation Chemistry

The Rosalind Franklin Institute and the University of Oxford’s Department of Pharmacology have entered into a strategic partnership for Next Generation Chemistry.

Christoph Treiber awarded ERC Starting Grant to investigate the origins of behavioural diversity

Congratulations are in order for postdoctoral research scientist Dr Christoph Treiber who has been awarded a Starting Grant from the European Research Council. His funded project will investigate the genetic components that may contribute to diversity of brain function and behaviour.

New blood-based test is the first ever to simultaneously identify if a patient has cancer and if it has spread

A publication by University of Oxford researchers describes a new minimally invasive and inexpensive blood test that can identify cancer in patients with non-specific symptoms. The early success of this technology makes it the first blood-based test that not only detects cancer in this population but can simultaneously identify if a cancer has spread.