Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A pioneering study, led by UK universities, including the University of Oxford, The Institute of Cancer Research, London, the University of Manchester and the University of Leeds, has provided the most comprehensive analysis to date of the genetic makeup of colorectal cancer (CRC).

3D rendering of a cancer cell

Cancers develop partly through genetic abnormalities within cells of the body. Colorectal cancer is a major cause of death worldwide, but we don’t yet have a full understanding of the genetic changes that cause it to grow. New research - published today in Nature - delivers an unprecedented view of the genetic landscape of CRC and its responses to treatment.

Utilising data from 2,023 bowel cancers from the 100,000 Genomes Project led by Genomics England and NHS England, the research team has identified new gene faults that lead to CRC. They’ve also uncovered new CRC cancer sub-groups (categories of cancer with specific genetic characteristics that affect how cancer behaves and responds to treatment). These findings offer profound insights into the disease's development and potential treatment strategies.

Key findings of the study:

  • Identification of over 250 key genes: The study has pinpointed more than 250 genes that play a crucial role in CRC, the great majority of which have not been previously linked to CRC or other cancers, expanding our understanding of how CRC develops.
  •  New sub-groups of CRC: Four novel, common sub-groups of CRC have been discovered based on genetic features. In addition, several rare CRC sub-groups have been identified and characterised. These groups have different patient outcomes and may respond differently to therapy.
  • Genetic mutation causes: The research reveals a variety of genetic changes across different regions of the colorectum, highlighting differences in CRC causes between individuals. For example, a process has been found that is more active in younger CRC patients’ cancers; the cause is unknown, but might be linked to diet and smoking.
  • New treatment pathways: Many identified mutations could potentially be targeted with existing treatments currently used across other cancers.

Read the full story on the University of Oxford website

The story is also covered on the Oxford Cancer website