Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

A pioneering collaborative mouse study from an international team of researchers including Department of Physiology, Anatomy and Genetics Associate Professor Ana Domingos published in Nature offers new therapeutic avenues for reducing visceral fat stores, which have been associated with cardiovascular disease and multiple types of cancer.

Obesity has been linked to an increased risk of 13 types of cancer, including breast and colorectal, the two most prevalent cancers, together with cardiovascular disease, one of the leading causes of death worldwide. 

The most harmful type of obesity is caused by excessive accumulation of visceral fat, commonly called "deep" fat. While the most visible fat stores, or subcutaneous fat, are located directly under the skin, visceral fat is the fat stored inside our abdominal cavity, surrounding our vital internal organs. Normal amounts of visceral fat support a number of fundamental functions, such as reproduction. However, too much visceral fat produces unhealthy levels of proteins and hormones that negatively impact neighbouring tissues and organs, and it can be very difficult to eliminate.

DPAG’s Associate Professor Ana Domingos has collaborated with researchers from the Champalimaud Research Programme in Portugal and the Max Planck Institute for Metabolism Research in Germany to explore the mechanisms that naturally reduce visceral fat with the aim of uncovering potential clinical applications to benefit patients suffering from obesity. In doing so, they have uncovered the first known neuro-immune process by which brain signals instruct immune function in visceral fat stores. This discovery offers several new approaches to tackle obesity and its related illness.

Read the full story on the Department of Physiology, Anatomy and Genetics website

Similar stories

Peter Horby receives prestigious award for outstanding service to public health

The Faculty of Public Health (FPH) has awarded its prestigious Alwyn Smith Prize to Professor Sir Peter Horby (Nuffield Department of Medicine) for 2020/2021 in recognition of his outstanding service to public health as a global leader in epidemic science.

Six new Fellowships announced as part of Oxford-Bristol Myers Squibb Fellowships Programme

The Oxford - Bristol Myers Squibb (BMS) Fellowships Programme continued to demonstrate significant progress over the last year, despite the challenges associated with the global pandemic, including restricted lab access and work from home guidance. Today, we are pleased to announce six new Oxford-BMS Fellowships for 2021.

Researchers set out steps to address mental health effects of the pandemic on young people

Researchers have outlined 14 steps that schools, mental health services and policymakers can take to help children and young people whose mental health has been affected by the COVID-19 pandemic.

Anti-cancer drug derived from fungus shows promise in clinical trials

A new industry-academic partnership between the University of Oxford and biopharmaceutical company NuCana as found that chemotherapy drug NUC-7738, derived from a Himalayan fungus, has 40 times greater potency for killing cancer cells than its parent compound.

Professor Trish Greenhalgh Highly Commended in the O²RB Excellence in Impact Awards 2021

Congratulations to Professor Trish Greenhalgh (Nuffield Department of Primary Care Health Sciences) who has been Highly Commended in the O²RB Excellence in Impact Awards 2021.

No benefit of convalescent plasma for critically ill COVID-19 patients

A large study of over 2000 COVID-19 patients has found that giving critically ill patients blood plasma from recovered COVID-19 patients did not significantly reduce deaths, or the need for intensive care support such as being put on a ventilator machine.