Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The discovery of pancreatic cancer biomarkers (naturally occurring molecules, genes or characteristics which can be used to confirm the presence or predict the outcome of a cancer) is vital in understanding patient outcomes and finding new therapeutic targets.

Pancreatic cancer

In recent years, improved understanding of the biology of pancreatic cancers has resulted in new combination therapies being developed, including the development of the first successful biomarker-guided therapy in pancreatic cancer known as the POLO trial. A recent paper from the SCALOP-1 trial team, led by Professor Somnath Mukherjee, was published in BJC Nature, which has identified proteins that could act as a new biomarker to predict a patient’s outcome from pancreatic cancer. The chemokine protein known as CCL5, found circulating in patient blood, was found in low quantities in patients with better overall pancreatic cancer survival (around 18.5 months, rather than less than a year).

It is already known that CCL5 is involved in tumour invasion, tumour metastasis and the creation of an immune-system-suppressing micro-environment that allows pancreatic cancer to develop quickly. Its identification as a biomarker makes CCL5 a perfect new target for potential drug treatments. For example, blockade therapies that target the CCL5-CCR5 pathway and reduce the presence of CCL5, may produce new opportunities to improve the outcome of other immunotherapies that pancreatic cancer patients are undergoing.

Co-lead of this study, Professor Eric O’Neil from Department of Oncology, is now investigating combination of CCL5 antagonist drugs with immunotherapy and radiotherapy drugs in animal models, which he hopes will lead to the development of new, more-effective pancreatic treatments in the future.

Read the full blog on the Cancer Research UK Oxford Centre website