Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The discovery of pancreatic cancer biomarkers (naturally occurring molecules, genes or characteristics which can be used to confirm the presence or predict the outcome of a cancer) is vital in understanding patient outcomes and finding new therapeutic targets.

Pancreatic cancer

In recent years, improved understanding of the biology of pancreatic cancers has resulted in new combination therapies being developed, including the development of the first successful biomarker-guided therapy in pancreatic cancer known as the POLO trial. A recent paper from the SCALOP-1 trial team, led by Professor Somnath Mukherjee, was published in BJC Nature, which has identified proteins that could act as a new biomarker to predict a patient’s outcome from pancreatic cancer. The chemokine protein known as CCL5, found circulating in patient blood, was found in low quantities in patients with better overall pancreatic cancer survival (around 18.5 months, rather than less than a year).

It is already known that CCL5 is involved in tumour invasion, tumour metastasis and the creation of an immune-system-suppressing micro-environment that allows pancreatic cancer to develop quickly. Its identification as a biomarker makes CCL5 a perfect new target for potential drug treatments. For example, blockade therapies that target the CCL5-CCR5 pathway and reduce the presence of CCL5, may produce new opportunities to improve the outcome of other immunotherapies that pancreatic cancer patients are undergoing.

Co-lead of this study, Professor Eric O’Neil from Department of Oncology, is now investigating combination of CCL5 antagonist drugs with immunotherapy and radiotherapy drugs in animal models, which he hopes will lead to the development of new, more-effective pancreatic treatments in the future.

Read the full blog on the Cancer Research UK Oxford Centre website

Similar stories

Same genome, different worlds: How a similar brain causes sexually dimorphic behaviours

General Research

A new paper from Department of Physiology, Anatomy & Genetics's Centre for Neural Circuits and Behaviour has shown how males and females are programmed differently in terms of sex.

Oxford University vaccine developer joins day of vaccinations at the Kassam Stadium

Coronavirus COVID-19 General

Today, Andrew Pollard, Professor of Pediatric Infection and Immunity at the University of Oxford, and chief investigator of the trials of the ChAdOx1 nCoV-19 coronavirus vaccine, volunteered his time to help deliver live-saving Covid vaccinations at the newly opened NHS Vaccine Centre at the Kassam Stadium, Oxford.

New form of gift wrap drives male reproductive success

General Research

A study from the Department of Physiology, Anatomy and Genetics (DPAG) has identified a new communication mechanism that ensures the transfer of a complex mix of signals and nutrients required for successful reproduction between males and females.

PRINCIPLE trial finds antibiotics azithromycin and doxycycline not generally effective treatments for COVID-19

Coronavirus COVID-19 General Research

In March 2020, the UK-wide Platform Randomised trial of INterventions against COVID-19 In older people (PRINCIPLE) trial was established as a flexible, platform randomised clinical trial to test a range of potential treatments for COVID-19 that might be suitable for use in the community to help people recover more quickly and prevent the need for hospital admission. The trial is one of three national platform trials for COVID-19 treatments, and complements the RECOVERY and REMAP-CAP trials that focus on hospitalised patients.

Early animal studies yield promising results for new potential COVID-19 vaccine

Coronavirus COVID-19 General Research

Studies carried out in the MRC Human Immunology Unit (MRC HIU) in collaboration with the Pirbright Institute have shown that a new potential vaccine against COVID-19, named RBD-SpyVLP, produces a strong antibody response in mice and pigs, providing vital information for the further development of the vaccine. Although this type of vaccine is not a competitor for the first wave of vaccines, it is hoped that it will be useful as a standalone vaccine or as a booster for individuals primed with a different COVID-19 vaccine.

Just over half of British Indians would take COVID vaccine

Coronavirus COVID-19 General Research

University of Oxford researchers from the Department of Physiology, Anatomy and Genetics (DPAG) and the Department of Psychiatry, in collaboration with The 1928 Institute, have published a major new study on the impact of COVID-19 on the UK’s largest BME population.