Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Researchers at the Medical Research Council Brain (MRC) Network Dynamics Unit in Oxford's Nuffield Department of Clinical Neurosciences have discovered a new neuronal mechanism in the hippocampus, that prevents new ‘flexible’ memories from being formed due to a past ‘robust’ memory.

Brains scan images © Shutterstock

Memories inform our everyday actions and guide our behaviours. However, when new memories are formed, they’re not made against a blank slate, but against the backdrop of our prior experiences. So, what if consecutive memories exert opposing demands on the brain? For example, can a ‘robust’ memory of a previous salient event prevent an individual from forming a new related memory that would require flexible updating?

Researchers at the Dupret laboratory used 'food-context conditioning' to train mice over several days to acquire a robust contextual memory by offering them a choice of high fat foods or their normal chow pellets in different environments. They then measured the ability of the mice to continually keep track of objects placed in their environment: remembering old objects and exploring new ones.

Results showed the mice with robust memory of a high fat foods failed to distinguish new objects placed in their environment, demonstrating how a robust contextual memory can prevent the formation of new memories. The robust memory recruits a steady amount of nerve cells, a hiring process that later blunts the formation of new flexible memories.

 

Read the full story on the University of Oxford website.