Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Researchers in the Department of Physiology, Anatomy and Genetics (DPAG) have found that the auditory system adapts to the changing acoustics of reverberant environments by temporally shifting the inhibitory tuning of cortical neurons to remove reverberation.

The effects of reverberation on natural sounds. Each panel shows the modelled representation of the same natural sound in the ferret inner ear, known as a “cochleagram”, in a small room with weak reverberation such as an office (left panel), or a large room with strong reverberation such as a church (right panel).

The sounds we hear in almost every environment are reflected by nearby objects, producing many delayed and distorted copies of the original sound, known as reverberation. Our brains are usually able to filter this out, allowing us to recognise the source of each sound regardless of the environment, to the extent that people with normal hearing rarely notice it at all. However, reverberation is known to cause severe difficulties for many people with hearing impairments, and for speech recognition algorithms such as those designed to assist those who cannot hear.

Despite the ubiquity of reverberation, the question of how the brain’s auditory system copes with reverberation has been largely unanswered. Recent research has observed that the effects of room reverberation seem to be partially removed from the neural responses to sounds in the auditory cortex. However, so far it has been largely unknown how the brain could ‘remove’ reverberation in this way.

A new paper from DPAG's King and Walker research groups has demonstrated, for the first time, how the brain may accomplish this ‘reverberation cancellation’. Their data shows that auditory cortical neurons adjust their filtering properties to adapt to changing acoustics of reverberant environments and reduce the effects of reverberation.

Read the full story on the DPAG website

Similar stories

Young lives under pressure as global crises hits mental health and well-being – report

The well-being and mental health of young people in low - and middle - income countries have been dramatically affected by the series of crises hitting the world. As the international community continues to struggle with the impact of COVID-19, conflict and climate change, the latest report from the Young Lives project shows a long-running upward trend in young people’s well-being has been sharply reversed alongside widespread anxiety and depression. Young people are less confident about their futures for the first time in the 20-year study.

Bacterial infections linked to one in eight global deaths, according to GRAM study

Data showing 7.7 million deaths from 33 bacterial infections can guide measures to strengthen health systems, particularly in low-income settings

New tool aims to make bowel cancer treatments more effective

The Leedham Lab in Nuffield Department of Medicine (NDM) has been awarded over £2M from Cancer Research UK to develop a new tool that could help guide how bowel cancer patients are treated in the future.

Doug Higgs awarded the 2023 Genetics Society Medal

The award recognises Radcliffe Department of Medicine's Professor Higgs major contribution to our understanding of how mammalian genes are switched on and off, and using haematopoiesis as a model to understand how genes function.

First evidence drug resistant bacteria can travel from gut to lung, increasing infection risks

A new Oxford University study released during World Antimicrobial Awareness Week has significant findings on how antimicrobial resistance (AMR) arises and persists. The results, published today in Nature Communications, provide the first direct evidence of AMR bacteria migrating from a patient’s gut microbiome to the lungs, increasing the risk of deadly infections.