Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Research carried out at the University of Oxford has led to the development of a new blood-based test to identify the pathology that triggers Parkinson’s disease before the main symptoms occur. This could allow clinicians to screen for those individuals at high risk of developing the disease and facilitate the timely introduction of precision therapies that are currently at clinical trial stage.

What is Parkinson's disease?

Parkinson's disease is the second most common neurodegenerative disease affecting seven million people worldwide with a projected doubling in cases by 2040. A major bottleneck in conducting clinical trials for disease modification is the identification of patients at the earliest stages of the disease development (pathogenesis) and the exclusion of other diseases with similar symptoms (mimics).

Parkinson's disease starts more than ten years before patients come to the clinic with symptoms because their brain cells fail to handle a small protein called alpha-synuclein. This leads to the formation of abnormal clumps of alpha-synuclein which damage vulnerable nerve cells, causing the familiar movement disorder and often dementia. By the time people are diagnosed with Parkinson's disease, most of these vulnerable nerve cells have already died and alpha-synuclein clumps have formed in many brain regions.

 

Read the full story on the Nuffield Department of Clinical Neurosciences website.