Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The University of Oxford-led National Consortium of Intelligent Medical Imaging (NCIMI) in the UK is collaborating with GE Healthcare to develop and test algorithms to aid in the diagnosis and management of COVID-19 pneumonia.

The program will focus on developing, enhancing and testing potential algorithms to help diagnose COVID-19 pneumonia, predict which patients will develop severe respiratory distress - a key cause of mortality in patients who develop COVID-19 pneumonia - and which patients might develop longer term lung function problems, even when they recover from respiratory distress.

At present, clinicians cannot easily predict which patients who test positive for COVID-19 will deteriorate and require hospital admission for oxygen and possible ventilation. Nor is it clear which patients will suffer long-term consequences from the lung damage from COVID-19 pneumonia. The teams aim to develop algorithms incorporating data from thousands of patients medical imaging, laboratory and clinical observations to provide both a quicker diagnosis and a prediction of how a patient may progress and recover.

Currently, some patients admitted to hospital do not see a worsening of their symptoms, while others who appear stable can deteriorate rapidly. Identification of those patients at highest risk of deterioration and long-term lung function problems may help physicians and caregivers to accelerate intensive support. It may also allow those with lower risk to be monitored in a suitably safe environment, potentially including the patient’s home. GE Healthcare and NCIMI aim to develop tools to help in the management of these COVID-19 patients from triage to acute monitoring, interventions, to discharge and those requiring follow-up after recovery.

Read more on the University of Oxford website

Similar stories

Human challenge trial launches to study immune response to COVID-19

Clinical Trials Coronavirus COVID-19 General

Though the COVID-19 pandemic has now been active for a year, not much is known about what happens when people who have already had COVID-19 are infected for a second time.

Risk of rare blood clotting higher for COVID-19 than for vaccines

Coronavirus COVID-19 Research

COVID-19 leads to a several-times higher risk of cerebral venous thrombosis (CVT) blood clots than current COVID-19 vaccines.

Alternating vaccines trial expands to include two additional vaccines

Clinical Trials Coronavirus COVID-19 General

Researchers running the Com-Cov study, launched in February to investigate alternating doses of the Oxford-AstraZeneca vaccine and the Pfizer vaccine, have today announced that the programme will be extended to include the Moderna and Novavax vaccines in a new study.

Oxford medical students launch flagship raffle in aid of NHS heroes and lifesaving medical equipment

General

Tingewick, a society formed of medical students from Oxford University, are hosting a virtual charity raffle. With over 70 amazing prizes, ranging from Truck festival tickets to restaurant vouchers to bags of books and even a bike, the raffle is an exciting way to celebrate lockdown lifting by supporting many wonderful Oxfordshire businesses whilst raising lots of money for charity.

Asthma drug budesonide shortens recovery time in non-hospitalised patients with COVID-19

Clinical Trials Coronavirus COVID-19 Research

Inhaled budesonide, a common corticosteroid, is the first widely available, inexpensive drug found to shorten recovery times in COVID-19 patients aged over 50 who are treated at home and in other community settings, reports the PRINCIPLE trial in 1,779 participants.