Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Professors Matthew Higgins and Michael Dustin from the University of Oxford, Prof Gavin Wright from the University of York, and Professors Shiroh Iwanaga and Hisashi Arase from Osaka University have secured a Wellcome Collaborative Award for their study “How do RIFINs and STEVORs modulate human immunity during malaria?”

Mosquito on skin

The £2M Wellcome Collaborative Award will fund a 5-year project to explore how the malaria parasite can deceive the human immune system.

Malaria is a serious disease caused by a parasite which is spread to humans through the bite of an infected mosquito. The tiny parasites that cause malaria hide within human red blood cells where they replicate and mature. However, the human immune system mounts a defence and responds by activating its immune cells to seek out and destroy infected red blood cells before the parasite matures, leading to parasite death, while sparing uninfected cells. To allow them to do this, our cells present molecules, such as major histocompatibility complex (MHC) on their surfaces, signalling to our immune cells that they are part of our bodies.

The malaria parasite has evolved a large family of proteins, called RIFINs and STEVORs, that are presented on infected blood cell surfaces. Previous work from partners in Osaka recently found that some of the RIFINs shield the infected red blood cells by shutting down signals in the immune cells, thereby protecting the parasite from detection.

The Oxford and Osaka teams published in 2020 in Nature that this RIFIN can mimic human molecules, such as MHC, that protect healthy cells from immune attack. The aim of the new research is to discover if other RIFINs do the same to better understand if this discovery may be harnessed to better treat malaria.

Read the full story on the Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences website

Similar stories

Oxford spinout trials revolutionary bioelectronic implant to treat incontinence

The first participants in a clinical trial of a bioelectrical therapy to treat incontinence have received their “smart” bioelectronic implants.

COVID-19 is a leading cause of death in children and young people in the US

A new study led by researchers at the University of Oxford’s Department of Computer Science has found that, between 2021 and 2022, COVID-19 was a leading cause of death in children and young people in the United States, ranking eighth overall. The results demonstrate that pharmaceutical and public health interventions should continue to be applied to limit the spread of the coronavirus and protect again severe disease in this age group.

Three or more concussions linked with worse brain function in later life

Experiencing three or more concussions is linked with worsened brain function in later life, according to new research.

New blood test could save lives of heart attack victims

Researchers in the Department of Physiology, Anatomy and Genetics (DPAG) have developed a blood test that measures stress hormone levels after heart attacks. The test – costing just £10 – could ensure patients receive timely life-saving treatment.

COVID-19 increased public trust in science, new survey shows

A survey of over 2000 British adults has found that public trust in science, particularly genetics, increased significantly during the pandemic. However, those with extremely negative attitudes towards science tend to have high self-belief in their own understanding despite low textbook knowledge.

Gero Miesenböck awarded 2023 Japan Prize

Congratulations to Professor Gero Miesenböck, Department of Physiology, Anatomy and Genetics (DPAG), who has been awarded the 2023 Japan Prize in the field of Life Sciences, together with Professor Karl Deisseroth, for pioneering work in the field of optogenetics.