Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Professors Matthew Higgins and Michael Dustin from the University of Oxford, Prof Gavin Wright from the University of York, and Professors Shiroh Iwanaga and Hisashi Arase from Osaka University have secured a Wellcome Collaborative Award for their study “How do RIFINs and STEVORs modulate human immunity during malaria?”

Mosquito on skin

The £2M Wellcome Collaborative Award will fund a 5-year project to explore how the malaria parasite can deceive the human immune system.

Malaria is a serious disease caused by a parasite which is spread to humans through the bite of an infected mosquito. The tiny parasites that cause malaria hide within human red blood cells where they replicate and mature. However, the human immune system mounts a defence and responds by activating its immune cells to seek out and destroy infected red blood cells before the parasite matures, leading to parasite death, while sparing uninfected cells. To allow them to do this, our cells present molecules, such as major histocompatibility complex (MHC) on their surfaces, signalling to our immune cells that they are part of our bodies.

The malaria parasite has evolved a large family of proteins, called RIFINs and STEVORs, that are presented on infected blood cell surfaces. Previous work from partners in Osaka recently found that some of the RIFINs shield the infected red blood cells by shutting down signals in the immune cells, thereby protecting the parasite from detection.

The Oxford and Osaka teams published in 2020 in Nature that this RIFIN can mimic human molecules, such as MHC, that protect healthy cells from immune attack. The aim of the new research is to discover if other RIFINs do the same to better understand if this discovery may be harnessed to better treat malaria.

Read the full story on the Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences website

Similar stories

New research reveals relationship between particular brain circuits and different aspects of mental wellbeing

Researchers at the University of Oxford have uncovered previously unknown details about how changes in the brain contribute to changes in wellbeing.

Night-time blood pressure assessment is found to be important in diagnosing hypertension

Around 15% of people aged 40-75 may have a form of undiagnosed high blood pressure (hypertension) that occurs only at night-time. Because they do not know about this, and therefore are not being treated for it, they are at a higher risk of cardiovascular disease such as stroke, heart failure, and even death, suggests new research from the University of Oxford published in the British Journal of General Practice.

Major new NIHR Global Health Research Unit to focus on data science and genomic surveillance of antimicrobial resistance

The Centre for Genomic Pathogen Surveillance, part of the Big Data Institute at the University of Oxford, has been awarded funding worth £7m for their work as an NIHR Global Health Research Unit (GHRU) for the next five years. The Centre’s research and capacity building work focuses on delivering genomics and enabling data for the surveillance of antimicrobial resistance (AMR).

How artificial intelligence is shaping medical imaging

Dr Qiang Zhang of the Radcliffe Department of Medicine explains how artificial intelligence is being used to help researchers and physicians interpret medical imaging.

Researchers describe how cancer cells can defend themselves from the consequences of certain genetic defects

Researchers in Department of Physiology, Anatomy and Genetics have identified a rescue mechanism that allows cancers to overcome the consequences of inactivating mutations in critically important genes.