Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Department of Physiology, Anatomy & Genetics (DPAG) scientists develop single-cell oxygen saturation imaging to study oxygen handling by red blood cells. New physiological techniques that measure the blood's oxygen saturation are particularly important in light of the current pandemic, as COVID-19 patients present an abnormally low concentration of oxygen in the blood.

grey square with blue dots and black square with yellow dots

Oxygen saturation of blood is a fundamental clinical parameter that assesses how much oxygen is being carried by red blood cells (RBCs). The importance of these so-called oximetery measurements is highlighted by the current COVID-19 crisis because patients present a profound drop in blood oxygen, known as hypoxaemia. However, another aspect of oxygen handling by blood that is not currently measured is the speed with which RBCs exchange gases. Indeed, routinely performed tests for gas-carrying capacity (for example, total hemoglobin) cannot determine how fast RBCs take-up and release oxygen. Such information is critical for evaluating the physiological fitness of RBCs, which have less than one second to exchange large volumes of oxygen in the lungs and tissues.

To address this problem, a team led by Associate Professor Pawel Swietach has designed a method to quantify gas exchange in individual RBCs. Applying this method to various blood disorders has highlighted the barriers to efficient gas exchange. The results identify the adaptations that allow healthy RBCs to exchange gases quickly, and explain how disease-related changes may impair oxygen transport.

Read the full story on the Department of Physiology, Anatomy & Genetics (DPAG) website