Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A new study led by the University of Oxford has found that natural evolution of antibiotic resistance genes has maintained resistance in bacteria despite a reduction in the use of antibiotics. The findings demonstrate the importance of understanding the regulatory evolution of resistance genes to strategically combat AMR. The study has been published in the Journal of the International Society for Microbial Ecology (ISME).

Colonies of bacteria growing on an agar plate © AndreasReh, Getty Images.

Antimicrobial resistance (AMR) is a serious and growing threat to global health, with 1.2 million people dying each year due to drug-resistant infections. The overuse and misuse of antibiotics is a major driver of AMR, and there is an urgent need to protect the efficacy of ‘last-line’ antibiotics to treat multidrug-resistant infections.

In 2017, the Chinese government banned the use of last-line antibiotic colistin as a growth promotor in animal feed in response to the rapid spread of antibiotic resistant bacteria- Escherichia coli (E.coli) carrying mobile colistin resistance (MCR) genes. Bacteria carrying MCR genes are resistant to treatment with colistin and cause hard to treat drug-resistant infections in humans and animals.

Read the full story on the University of Oxford's website.