Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Research published this week and led by University of Oxford researchers describes a first-of-its-kind method capable of distinguishing authentic and falsified vaccines by applying machine learning to mass spectral data. The method proved effective in differentiating between a range of authentic and ‘faked’ vaccines previously found to have entered supply chains.

machine with vaccines vials being filled in © Volodyar, Getty Images.

The results of the study provide a proof-of-concept method that could be scaled to address the urgent need for more effective global vaccine supply chain screening. A key benefit is that it uses clinical mass spectrometers already distributed globally for medical diagnostics.

The global population is increasingly reliant on vaccines to maintain population health with billions of doses used annually in immunisation programs worldwide. The vast majority of vaccines are of excellent quality. However, a rise in substandard and falsified vaccines threaten global public health. Besides failing to treat the disease for which they were intended, these can have serious health consequences, including death, and reduce confidence in vaccines. Unfortunately, there is currently no global infrastructure in place to monitor supply chains using screening methods developed to identify ineffective vaccines.

In this new study, researchers developed and validated a method that is able to distinguish authentic and falsified vaccines using instruments developed for identifying bacteria in hospital microbiology laboratories. The method is based on matrix-assisted laser desorption/ionisation-mass spectrometry (MALDI-MS), a technique used to identify the components of a sample by giving the constituent molecules a charge and then separating them. The MALDI-MS analysis is then combined with open-source machine learning. This provides a reliable multi-component model which can differentiate authentic and falsified vaccines, and is not reliant on a single marker or chemical constituent.

 

Read the full story on the University of Oxford website.

 

Similar stories

Typhoid vaccine trial confirms sustained protection for older children

A single dose of typhoid conjugate vaccine (TCV) offers safe, effective protection against typhoid two years after vaccination in all children, and sustained protection for older children at three to five years post immunisation, according to a report by researchers at the Oxford Vaccine Group and the International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b). But it also shows a decline in protection at the later timepoints among children vaccinated at younger ages.