Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

New research from Department of Physiology, Anatomy and Genetics (DPAG) has identified a new gene that allows cancer cells to survive in the typically acidic microenvironment of a malignant tumour. Researchers have discovered drugs that inhibit the gene in other medical conditions also selectively kill cancer cells at acidic pH, without damaging healthy tissue. This defines a novel strategy for targeting acidic tumour regions.

Acidic regions of a cancer tumour labelled red © Dr Jana Koth, MRC Weatherall Institute for Molecular Medicine
Acidic regions of a cancer tumour labelled red

Cancer cells create uniquely acidic environments for tumours to invade formerly healthy tissues and metastasise. Their higher metabolic rates produce greater volumes of lactic acid and CO2, and a lack of blood vessels prevent efficient wash-out of acidic waste products from the tumour. A great deal of research over the years has attempted to explain how cancer cells adapt to survive in these acidic conditions. However, presently none of the major approved therapies for managing tumour growth actively target acid handling.

New research led by Dr Johanna Michl and Professor Pawel Swietach (Department of Physiology, Anatomy and Genetics, DPAG) performed a genome-wide CRISPR-Cas9 screen to simultaneously study all genes potentially involved in cancer cell survival under acid stress. They have identified, for the first time, that a fundamental mitochondrial process called oxidative phosphorylation (OXPHOS) is the principal and most critical survival pathway in acidic tumour environments. Corresponding author Dr Johanna Michl said: “Targeting mitochondrial pathways such as OXPHOS has previously been considered a promising avenue for cancer therapy. However, we are the first to show that the efficacy of targeting mitochondrial metabolism in tumours depends on an acidic environment.”

Read the full story on the DPAG website

Similar stories

Oxford spinout trials revolutionary bioelectronic implant to treat incontinence

The first participants in a clinical trial of a bioelectrical therapy to treat incontinence have received their “smart” bioelectronic implants.

COVID-19 is a leading cause of death in children and young people in the US

A new study led by researchers at the University of Oxford’s Department of Computer Science has found that, between 2021 and 2022, COVID-19 was a leading cause of death in children and young people in the United States, ranking eighth overall. The results demonstrate that pharmaceutical and public health interventions should continue to be applied to limit the spread of the coronavirus and protect again severe disease in this age group.

Three or more concussions linked with worse brain function in later life

Experiencing three or more concussions is linked with worsened brain function in later life, according to new research.

New blood test could save lives of heart attack victims

Researchers in the Department of Physiology, Anatomy and Genetics (DPAG) have developed a blood test that measures stress hormone levels after heart attacks. The test – costing just £10 – could ensure patients receive timely life-saving treatment.

COVID-19 increased public trust in science, new survey shows

A survey of over 2000 British adults has found that public trust in science, particularly genetics, increased significantly during the pandemic. However, those with extremely negative attitudes towards science tend to have high self-belief in their own understanding despite low textbook knowledge.

Gero Miesenböck awarded 2023 Japan Prize

Congratulations to Professor Gero Miesenböck, Department of Physiology, Anatomy and Genetics (DPAG), who has been awarded the 2023 Japan Prize in the field of Life Sciences, together with Professor Karl Deisseroth, for pioneering work in the field of optogenetics.