Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

A study from the Department of Physiology, Anatomy and Genetics (DPAG) has identified a new communication mechanism that ensures the transfer of a complex mix of signals and nutrients required for successful reproduction between males and females.

Seminal fluid in the male accessory gland full of elliptical lipid-containing microcarriers

By studying such events during mating in the fruit fly, researchers at the University of Oxford have identified a new communication mechanism in which nutrients and signals are combined in fatty droplets that stably store their bioactive cargos in males, until they are transferred to females when they dissipate within minutes. These specialised multi-molecular assemblies called microcarriers, are made by the prostate-like accessory gland of the male and contain a central fatty (lipid) core wrapped with multiple proteins, including a molecule called Sex Peptide. When Sex Peptide is released in the mated female, it stimulates her to produce more progeny and reprogrammes her brain so she rejects other male suitors.

The remarkable role of Sex Peptide in mediating this form of sexual conflict has been recognised for several decades. However, it has been unclear how this peptide can remain stable in the secretions of the male accessory gland, then rapidly become biologically active in the female uterus. The contrasting behaviour of microcarriers in the male and female reproductive tracts provides the answer to that question. Even more surprisingly, analysis of males that lack Sex Peptide reveals that this protein provides an essential part of the wrapping that shapes these reproductive gifts. In its absence, the male accessory gland becomes filled with giant lipid droplets that do not dissipate properly when transferred to females, partly explaining the inability of these males to reprogramme female behaviour after mating.

Read the full story on the Department of Physiology, Anatomy & Genetics website.

Similar stories

PRINCIPLE Covid-19 treatments trial widens to under 50s and adds colchicine

Clinical Trials Coronavirus COVID-19 General Research

From today, the UK’s national priority platform trial of Covid-19 treatments for recovery at home launches its investigation of the gout drug colchicine, and expands for the first time to include adults of any age.

Regular meat consumption linked with a wide range of common diseases

Research

Regular meat consumption is associated with a range of diseases that researchers had not previously considered, according to a large, population-level study conducted by a team at the University of Oxford.

New data show vaccines reduce severe COVID-19 in older adults

Coronavirus COVID-19 Research

New data show both Oxford / AstraZeneca vaccine and the Pfizer-BioNTech vaccines significantly reduce severe COVID-19 in older adults.

Singula Bio, a new Oxford spin-out company - Cancer need not be fatal

General Innovation Research

Singula Bio, a bold new seed-stage biotechnology company spun out of Oxford University, has been launched with the intention of helping show that cancer need not be fatal. Led by three Oxford cancer specialists, the firm is aims to become a world leader in therapies to use against difficult-to-treat solid malignancies such as ovarian cancer - using the body’s own immune system to fight previously fatal cancers.

Major rise in public support for COVID vaccine – Oxford study

Coronavirus COVID-19 General Research

More than three quarters of people in the UK now say they are ’very likely’ to have the vaccine – up from 50% among the same group of survey respondents five months ago –according to a two-wave Oxford University survey published today.