Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Researchers publish the first blueprint of transcriptional factors that control neutrophil-driven inflammation in Nature Immunology.

Blood cells and neutrophil

Neutrophils are important cells in the immune system, produced in very large numbers in the bone marrow. When in circulation they patrol blood vessels and tissues seeking out sources of disease or damage to regulate inflammatory and immune responses.

Evidence supports the idea that neutrophils are transcriptionally active cells that have the ability to adapt their genome and change the function of the cell en route to tissues. They display different functions such as phagocytosis, generating reactive oxygen species, and producing cytokines in response to inflammation. But the area remains largely unexplored.

Irina Udalova, Professor of Molecular Immunology at the Kennedy Institute for Rheumatology (Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences) and senior author of a new study published in Nature Immunology said: "We know very little about neutrophil molecular wiring as it's an emerging field of study. So, our question was how the neutrophils change from the point of being developed in the bone marrow, then being released into the blood, and getting into the tissue. We discovered that rather than being static cells, they are remodelling their chromatin during their life cycle and that remodelling is often associated with transcriptional activity."

Having established that neutrophils do change during their transition to the tissue, the team then wanted to understand what transcriptional factors shape the responses.

Read the full news story on the Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences website

Similar stories

Long COVID: vaccination could reduce symptoms, new research suggests

While evidence suggests that people who are vaccinated before they get COVID are less likely to develop long COVID than unvaccinated people, the effectiveness of vaccination on existing long COVID has been less clear.

Com-COV vaccine study to research third dose booster options for 12-to-15-year-olds

Researchers running the University of Oxford-led Com-COV programme have launched a further study of COVID-19 vaccination schedules in young people aged 12 to 15 – with a focus on assessing different options for a third dose booster vaccination.

Population-scale study highlights ongoing risk of COVID-19 in some cancer patients despite vaccination

COVID-19 vaccination is effective in most cancer patients, but the level of protection against COVID-19 infection, hospitalisation and death offered by the vaccine is less than in the general population and vaccine effectiveness wanes more quickly.

New reporting guidelines developed to improve AI in healthcare settings

New reporting guidelines, jointly published in Nature Medicine and the BMJ by Oxford researchers, will ensure that early studies on using Artificial Intelligence (AI) to treat real patients will give researchers the information needed to develop AI systems safely and effectively.

Major boost for Oxford’s mission to counter future pandemic threats

The Moh Family Foundation has given a substantial gift to support the work of Oxford University’s Pandemic Sciences Institute, greatly strengthening its ability to identify and counter future pandemic threats and ensure equitable access to treatments and vaccines around the world.