Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Alternating doses of the Oxford-AstraZeneca and Pfizer-BioNTech vaccines generate robust immune responses against COVID-19, according to researchers running the University of Oxford-led Com-COV study.

Mockup of two doses of a COVID-19 vaccine with needle
  • Mixed schedules involving Pfizer-BioNTech and Oxford-AstraZeneca generate strong immune response against SARS-CoV2 spike IgG protein
  • Doses administered four weeks apart; data for 12-week dose interval due soon.
  • Immune responses differed according to order of immunisation, with Oxford-AstraZeneca followed by Pfizer-BioNTech generating the better immune response out of the two mixed schedules.

In a paper published on the Lancet pre-print server, they report that both ‘mixed’ schedules (Pfizer-BioNTech followed by Oxford-AstraZeneca, and Oxford-AstraZeneca followed by Pfizer-BioNTech) induced high concentrations of antibodies against the SARS-CoV2 spike IgG protein when doses were administered four weeks apart.

This means all possible vaccination schedules involving the Oxford-AstraZeneca and Pfizer-BioNTech vaccines could potentially be used against COVID-19.

Read the full story on the University of Oxford website

Similar stories

Oxford spinout trials revolutionary bioelectronic implant to treat incontinence

The first participants in a clinical trial of a bioelectrical therapy to treat incontinence have received their “smart” bioelectronic implants.

COVID-19 is a leading cause of death in children and young people in the US

A new study led by researchers at the University of Oxford’s Department of Computer Science has found that, between 2021 and 2022, COVID-19 was a leading cause of death in children and young people in the United States, ranking eighth overall. The results demonstrate that pharmaceutical and public health interventions should continue to be applied to limit the spread of the coronavirus and protect again severe disease in this age group.

Three or more concussions linked with worse brain function in later life

Experiencing three or more concussions is linked with worsened brain function in later life, according to new research.

New blood test could save lives of heart attack victims

Researchers in the Department of Physiology, Anatomy and Genetics (DPAG) have developed a blood test that measures stress hormone levels after heart attacks. The test – costing just £10 – could ensure patients receive timely life-saving treatment.

COVID-19 increased public trust in science, new survey shows

A survey of over 2000 British adults has found that public trust in science, particularly genetics, increased significantly during the pandemic. However, those with extremely negative attitudes towards science tend to have high self-belief in their own understanding despite low textbook knowledge.

Gero Miesenböck awarded 2023 Japan Prize

Congratulations to Professor Gero Miesenböck, Department of Physiology, Anatomy and Genetics (DPAG), who has been awarded the 2023 Japan Prize in the field of Life Sciences, together with Professor Karl Deisseroth, for pioneering work in the field of optogenetics.