Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A new study published in Nature has identified a potential Achilles heel in the protective layers surrounding Gram-negative bacteria that could aid in the development of next-generation antibiotics.

Clusters of the essential protein BamA in the outer membrane of the bacterium Escherichia coli © Dr Gideon Mamou
Clusters of the essential protein BamA in the outer membrane of the bacterium Escherichia coli

The study, carried out jointly by Professor Waldemar Vollmer and Dr Federico Corona at Newcastle University, alongside Professor Colin Kleanthous and Dr Gideon Mamou in the Department of Biochemistry at the University of Oxford, shows that Gram-negative bacteria depend on the cell wall to synchronise building of the outer membrane.

The World Health Organization (WHO) has declared Antimicrobial Resistance (AMR) one of the top 10 global public health threats. Some bacteria have already become resistant to all known antibiotics. Particularly problematic are multidrug resistant Gram-negative bacteria such as Escherichia coliPseudomonas aeruginosa and Klebsiella pneumoniae that cause pneumonias and sepsis. Their outer membrane resides beyond the cell wall and excludes many classes of antibiotics that would otherwise target it.

The research reveals that the cell wall, which is composed of a tough material known as peptidoglycan, exerts surprising control over where new proteins are introduced into the outer membrane by an essential biogenesis protein known as BamA. This helps bacteria coordinate these layers, which is crucial for the way they grow.

Read the full story on the Department of Biochemistry website

Similar stories

New research reveals relationship between particular brain circuits and different aspects of mental wellbeing

Researchers at the University of Oxford have uncovered previously unknown details about how changes in the brain contribute to changes in wellbeing.

Night-time blood pressure assessment is found to be important in diagnosing hypertension

Around 15% of people aged 40-75 may have a form of undiagnosed high blood pressure (hypertension) that occurs only at night-time. Because they do not know about this, and therefore are not being treated for it, they are at a higher risk of cardiovascular disease such as stroke, heart failure, and even death, suggests new research from the University of Oxford published in the British Journal of General Practice.

Major new NIHR Global Health Research Unit to focus on data science and genomic surveillance of antimicrobial resistance

The Centre for Genomic Pathogen Surveillance, part of the Big Data Institute at the University of Oxford, has been awarded funding worth £7m for their work as an NIHR Global Health Research Unit (GHRU) for the next five years. The Centre’s research and capacity building work focuses on delivering genomics and enabling data for the surveillance of antimicrobial resistance (AMR).

How artificial intelligence is shaping medical imaging

Dr Qiang Zhang of the Radcliffe Department of Medicine explains how artificial intelligence is being used to help researchers and physicians interpret medical imaging.

Researchers describe how cancer cells can defend themselves from the consequences of certain genetic defects

Researchers in Department of Physiology, Anatomy and Genetics have identified a rescue mechanism that allows cancers to overcome the consequences of inactivating mutations in critically important genes.