Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

A new genetic study of the bacteria that cause pleurisy has shown most cases involve more than one type of bacterium, and revealed which bacterial combinations cause the most serious infections.

Gram Negative Bacteria

Pleural infection is a common and severe disease with high morbidity and mortality worldwide. Pleural infection occurs when bacteria invade the pleural space, which is the area in-between the lungs and the chest wall. Patients need hospitalisation, which could last from several days to weeks. Conventional bacterial culture techniques fail to identify the pathogen in approximately 40% of cases, which leads to broad-spectrum antibiotics being used as treatment.

In a new study published in The Lancet Microbe, an international collaboration of scientists led by researchers from Oxford University’s Nuffield Department of Medicine has found that pleural infection was predominately caused by more than one microbe at a time.

Read the full story on the University of Oxford website

Similar stories

Com-COV vaccine study to research third dose booster options for 12-to-15-year-olds

Researchers running the University of Oxford-led Com-COV programme have launched a further study of COVID-19 vaccination schedules in young people aged 12 to 15 – with a focus on assessing different options for a third dose booster vaccination.

Population-scale study highlights ongoing risk of COVID-19 in some cancer patients despite vaccination

COVID-19 vaccination is effective in most cancer patients, but the level of protection against COVID-19 infection, hospitalisation and death offered by the vaccine is less than in the general population and vaccine effectiveness wanes more quickly.

New reporting guidelines developed to improve AI in healthcare settings

New reporting guidelines, jointly published in Nature Medicine and the BMJ by Oxford researchers, will ensure that early studies on using Artificial Intelligence (AI) to treat real patients will give researchers the information needed to develop AI systems safely and effectively.

Major boost for Oxford’s mission to counter future pandemic threats

The Moh Family Foundation has given a substantial gift to support the work of Oxford University’s Pandemic Sciences Institute, greatly strengthening its ability to identify and counter future pandemic threats and ensure equitable access to treatments and vaccines around the world.

Three NHSBT research units launch at University of Oxford

The NIHR has awarded three new Blood and Transplant Research Units (BTRUs) to the University of Oxford.