Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A new study by neuroscientists at the University of Oxford shows that mobile genetic elements that were active in the genomes of our ancestors could be closely linked to important functions in our brain and might help diversify our behaviour, cognition and emotions.

3D illustration of dna structure

The human genome contains the instructions to build and maintain all cells in our body. We inherit this “cell manual” from our parents and pass it on to our children. Errors in this manual can change cell properties and trigger diseases, including cancer. More than half of our genome is made up of ‘junk’ DNA, a large part of which is comprised of potentially mobile pieces called transposons, or 'jumping genes', which are believed to have evolved from ancient viruses. 

Transposons can be viewed as 'loose pages' within our cell manual because they can change their position, and their distribution differs within each person’s genome. Transposons inserted in genes can disrupt their function and impair important cell processes. However, more recently it has been proposed that transposons might also play more beneficial roles in our body, such as in the communication between different cells in our brains.

Researchers in the Centre for Neural Circuits and Behaviour in Oxford have now used state-of-the-art single-cell sequencing on the brains of fruit flies, a well-established model organism in neuroscience, to investigate transposon activity in the brain at an unprecedented level of detail. This new analysis revealed that transposons were not uniformly active throughout the entire brain of flies, but rather showed highly distinct patterns of expression. Moreover, these patterns were tightly linked to genes located near transposons. This indicates that transposons might play an important altruistic role in our body.

The full story is available on the University of Oxford website

Similar stories

Can humans hibernate?

Illuminating new TEDx Talk from Professor of Sleep Physiology Vladyslav Vyazovskiy

Athena Swan Gold Award success for Nuffield Department of Primary Care Health Sciences

The award reflects the Department’s commitment to representation, progression and success for all. It acknowledges the innovative policies and practices developed across the department and the detailed action plans for improvement.

RECOVERY trial team awarded MRC Impact Prize for Outstanding Team Impact

The Medical Research Council Prize Committee has awarded the RECOVERY trial team the MRC Impact Prize 2022 for Outstanding Team Impact.

Professor Sir Chris Whitty brings greater understanding of epidemics to Oxford

Chief Medical Officer of England Professor Sir Chris Whitty KCB FMedSci delivers the Sherrington Prize Lecture: Public Understanding of Science to an audience of Oxford staff and students.

Multiple Debilitating Pains – New global study shows the experience of Endometriosis is rooted in a person’s genetics

Researchers at the University of Oxford in collaboration with 25 teams across the world have published the largest study to date of the genetic basis of endometriosis.

Study shows delaying treatment for localised prostate cancer does not increase mortality risk

Active monitoring of prostate cancer has the same high survival rates after 15 years as radiotherapy or surgery, reports the largest study of its kind.