Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

A new study by neuroscientists at the University of Oxford shows that mobile genetic elements that were active in the genomes of our ancestors could be closely linked to important functions in our brain and might help diversify our behaviour, cognition and emotions.

3D illustration of dna structure

The human genome contains the instructions to build and maintain all cells in our body. We inherit this “cell manual” from our parents and pass it on to our children. Errors in this manual can change cell properties and trigger diseases, including cancer. More than half of our genome is made up of ‘junk’ DNA, a large part of which is comprised of potentially mobile pieces called transposons, or 'jumping genes', which are believed to have evolved from ancient viruses. 

Transposons can be viewed as 'loose pages' within our cell manual because they can change their position, and their distribution differs within each person’s genome. Transposons inserted in genes can disrupt their function and impair important cell processes. However, more recently it has been proposed that transposons might also play more beneficial roles in our body, such as in the communication between different cells in our brains.

Researchers in the Centre for Neural Circuits and Behaviour in Oxford have now used state-of-the-art single-cell sequencing on the brains of fruit flies, a well-established model organism in neuroscience, to investigate transposon activity in the brain at an unprecedented level of detail. This new analysis revealed that transposons were not uniformly active throughout the entire brain of flies, but rather showed highly distinct patterns of expression. Moreover, these patterns were tightly linked to genes located near transposons. This indicates that transposons might play an important altruistic role in our body.

The full story is available on the University of Oxford website

Similar stories

Com-COV vaccine study to research third dose booster options for 12-to-15-year-olds

Researchers running the University of Oxford-led Com-COV programme have launched a further study of COVID-19 vaccination schedules in young people aged 12 to 15 – with a focus on assessing different options for a third dose booster vaccination.

Population-scale study highlights ongoing risk of COVID-19 in some cancer patients despite vaccination

COVID-19 vaccination is effective in most cancer patients, but the level of protection against COVID-19 infection, hospitalisation and death offered by the vaccine is less than in the general population and vaccine effectiveness wanes more quickly.

New reporting guidelines developed to improve AI in healthcare settings

New reporting guidelines, jointly published in Nature Medicine and the BMJ by Oxford researchers, will ensure that early studies on using Artificial Intelligence (AI) to treat real patients will give researchers the information needed to develop AI systems safely and effectively.

Major boost for Oxford’s mission to counter future pandemic threats

The Moh Family Foundation has given a substantial gift to support the work of Oxford University’s Pandemic Sciences Institute, greatly strengthening its ability to identify and counter future pandemic threats and ensure equitable access to treatments and vaccines around the world.

Three NHSBT research units launch at University of Oxford

The NIHR has awarded three new Blood and Transplant Research Units (BTRUs) to the University of Oxford.