Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

When it comes to distinguishing a healthy cell from an infected one that needs to be destroyed, the immune system’s killer T cells sometimes make mistakes. This discovery, described today in the journal eLife, upends a long-held belief among scientists that T cells were nearly perfect at discriminating friend from foe. The results may point to new ways to treat autoimmune diseases that cause the immune system to attack the body, or lead to improvements in cutting-edge cancer treatments.

colourized 3d electron micrograph of T cell

It is widely believed that T cells can discriminate perfectly between infected cells and healthy ones based on how tightly they are able to bind to molecules called antigens on the surface of each. They bind tightly to antigens derived from viruses or bacteria, but less tightly to our own antigens on normal cells. But recent studies by scientists looking at autoimmune diseases suggest that T cells can attack otherwise normal cells if they express unusually large numbers of our own antigens, even though these bind only weakly.

 

We set out to resolve this discrepancy between the idea that T cells are near perfect at discriminating between healthy and infected cells based on the antigen binding strength, and clinical results that suggests otherwise.
- Johannes Pettmann

Co-first author Johannes Pettmann, a DPhil student based at the Sir William Dunn School of Pathology and the Davis lab at the MRC Weatherall Institute of Molecular Medicine, added “We did this by very precisely measuring the binding strength of different antigens.”

The team measured exactly how tightly receptors on T cells bind to a large number of different antigens, and then measured how T cells from healthy humans responded to cells loaded with different amounts of these antigens. “Our methods, combined with computer modelling, showed that the T cell’s receptors were better at discrimination compared to other types of receptors,” says co-first author Anna Huhn, also a DPhil student at the Sir William Dunn School of Pathology. “But they weren’t perfect – their receptors compelled T cells to respond even to antigens that showed only weak binding.”

Read the full story on the Radcliffe Department of Medicine website.

Similar stories

Misophonia: nearly one in five UK adults have the condition causing extreme reactions to certain sounds

Many of us have sounds that we find to be annoying. But for some people, certain sounds actually trigger extreme reactions.

Any type of hormonal contraceptive may increase risk of breast cancer

An analysis of data by researchers at the Nuffield Department of Population Health’s Cancer Epidemiology Unit has shown that use of progestogen-only hormonal contraceptives is associated with a 20-30% higher risk of breast cancer. The results are published in PLOS Medicine.

Viewing self-harm images on the internet and in social media usually causes harm, according to new review

Clinical researchers have reviewed the international research evidence regarding the impact of viewing images of self-harm on the internet and in social media.

Can humans hibernate?

Illuminating new TEDx Talk from Professor of Sleep Physiology Vladyslav Vyazovskiy

Athena Swan Gold Award success for Nuffield Department of Primary Care Health Sciences

The award reflects the Department’s commitment to representation, progression and success for all. It acknowledges the innovative policies and practices developed across the department and the detailed action plans for improvement.

RECOVERY trial team awarded MRC Impact Prize for Outstanding Team Impact

The Medical Research Council Prize Committee has awarded the RECOVERY trial team the MRC Impact Prize 2022 for Outstanding Team Impact.