Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

When it comes to distinguishing a healthy cell from an infected one that needs to be destroyed, the immune system’s killer T cells sometimes make mistakes. This discovery, described today in the journal eLife, upends a long-held belief among scientists that T cells were nearly perfect at discriminating friend from foe. The results may point to new ways to treat autoimmune diseases that cause the immune system to attack the body, or lead to improvements in cutting-edge cancer treatments.

colourized 3d electron micrograph of T cell

It is widely believed that T cells can discriminate perfectly between infected cells and healthy ones based on how tightly they are able to bind to molecules called antigens on the surface of each. They bind tightly to antigens derived from viruses or bacteria, but less tightly to our own antigens on normal cells. But recent studies by scientists looking at autoimmune diseases suggest that T cells can attack otherwise normal cells if they express unusually large numbers of our own antigens, even though these bind only weakly.

 

We set out to resolve this discrepancy between the idea that T cells are near perfect at discriminating between healthy and infected cells based on the antigen binding strength, and clinical results that suggests otherwise.
- Johannes Pettmann

Co-first author Johannes Pettmann, a DPhil student based at the Sir William Dunn School of Pathology and the Davis lab at the MRC Weatherall Institute of Molecular Medicine, added “We did this by very precisely measuring the binding strength of different antigens.”

The team measured exactly how tightly receptors on T cells bind to a large number of different antigens, and then measured how T cells from healthy humans responded to cells loaded with different amounts of these antigens. “Our methods, combined with computer modelling, showed that the T cell’s receptors were better at discrimination compared to other types of receptors,” says co-first author Anna Huhn, also a DPhil student at the Sir William Dunn School of Pathology. “But they weren’t perfect – their receptors compelled T cells to respond even to antigens that showed only weak binding.”

Read the full story on the Radcliffe Department of Medicine website.

Similar stories

Oxford University academics recognised in Queen’s Birthday Honours

The pioneering work of members of the University, including research into tackling the Coronavirus pandemic, has been recognised in The Queen's Birthday Honours List.

Two Oxford Professors elected as EMBO Members

Professor Robert Klose and Professor Ervin Fodor are two of 64 life scientists to be elected to The European Molecular Biology Organization (EMBO).

Scientists make DNA breakthrough which could identify why some people are more affected by Covid-19

Scientists from the MRC Weatherall Institute of Molecular Medicine at Oxford University have developed a method that allows them to see, with far greater accuracy, how DNA forms large scale structures within a cell nucleus.

AI endoscopy enables 3D surface measurements of pre-cancerous condition in oesophagus

Clinicians and engineers in Oxford have begun using artificial intelligence alongside endoscopy to get more accurate readings of the pre-cancerous condition Barrett’s oesophagus and so determine patients most at risk of developing cancer.

The COVID-19 International Modelling Consortium (CoMo Consortium) enters a new phase

Created in March 2020 to assist policymakers to make use of existing evidence in mathematical and epidemiological models to inform strategies for minimising the impact of COVID-19, the CoMo Consortium brings together mathematical modellers, epidemiologists, health economists and public health experts from more than 40 countries across Africa, Asia and South and North America.

New Head of the Department of Psychiatry – Professor Belinda Lennox

Professor Belinda Lennox has been welcomed to the role of Head of the Department of Psychiatry at the University of Oxford and will take over leadership in October 2021.