Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

A new study from Department of Physiology, Anatomy & Genetics has addressed a long-standing gap in our understanding of systemic iron homeostasis. It provides the first formal demonstration that the hormone hepcidin controls iron reabsorption in the kidney, in a manner that impacts the body’s iron levels, under normal physiological conditions. It also demonstrates for the first time how this mechanism becomes critically important in the development of iron disorders.

Illustration showing iron reabsorption
In addition to absorption in the gut and recycling in the spleen, iron is also obtained through reabsorption in the kidney

Iron levels in the body are largely controlled by activity in two key organs: the gut, where we absorb iron from our diet, and the spleen, where we recycle red blood cells. The hormone hepcidin controls the availability of iron in the blood stream by inhibiting the iron exporter ferroportin in the gut and spleen. It has long been speculated that a third organ could be involved: an abundance of ferroportin has been observed in the kidney, implicating it in the reabsorption of iron from urine back into the circulation. However, the extent to which the kidney contributes to the regulation of iron in the body has so far been little understood. We do not know how important the kidney iron reabsorption is, nor how it is regulated.

A new study from the Lakhal-Littleton Research Group (Department of Physiology, Anatomy & Genetics - DPAG) has formally demonstrated that the kidney indeed reabsorbs iron back into the blood stream using ferroportin. Their findings show that if ferroportin in the kidney is blocked, there is a reduction in the body’s iron levels, which is quickly corrected by a compensatory increase in gut iron absorption.  According to Associate Professor Samira Lakhal-Littleton: “This means that under normal physiological conditions, the kidney is a less important  source of iron than the gut and spleen.”

Read the full story on the DPAG website.

Similar stories

Prestigious award for Oxford professor's diabetes work

A University of Oxford professor has been awarded the 2021 EASD-Novo Nordisk Foundation Prize for Excellence for his decades of effort to understand, prevent and combat type 1 diabetes.

Wellcome accolades for Dr Douglas

Dr Alexander (Sandy) Douglas, an investigator at the Jenner Institute, Nuffield Department of Medicine, has recently received two prestigious Wellcome accolades.

FOCUS4: a flagship trial in colorectal cancer

Professor Tim Maughan (Department of Oncology) outlines the flagship work of the FOCUS4 trials, whose results were presented last weekend at the European Society of Medical Oncology (ESMO) annual meeting

Oxford and Oracle partner to speed identification of COVID-19 variants

The fast spread of the highly infectious Delta variant underscores the need for faster identification of COVID-19 mutations. Uniting governments and medical communities in this challenge, the University of Oxford and Oracle’s Global Pathogen Analysis System (GPAS) is now being used by organizations on nearly every continent. Institutions using the platform include: the University of Montreal Hospital Centre Research Centre, the Institute of Public Health Research of Chile, the Oxford University Clinical Research Unit in Vietnam, the Institute of Clinical Pathology and Medical Research – New South Wales Pathology, and Oxford Nanopore Technologies. GPAS is also now part of the Public Health England New Variant Assessment Platform.

Vaccinated groups at highest risk of Covid-19 hospitalisation and death identified using new QCovid tool

Researchers from the University of Oxford have today reported on findings on the vaccinated people who are at greatest risk from severe Covid-19 leading to hospitalisation or death from 14 days post the second dose vaccination, when substantial immunity should be expected.