Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

A new study from Department of Physiology, Anatomy & Genetics has addressed a long-standing gap in our understanding of systemic iron homeostasis. It provides the first formal demonstration that the hormone hepcidin controls iron reabsorption in the kidney, in a manner that impacts the body’s iron levels, under normal physiological conditions. It also demonstrates for the first time how this mechanism becomes critically important in the development of iron disorders.

Illustration showing iron reabsorption
In addition to absorption in the gut and recycling in the spleen, iron is also obtained through reabsorption in the kidney

Iron levels in the body are largely controlled by activity in two key organs: the gut, where we absorb iron from our diet, and the spleen, where we recycle red blood cells. The hormone hepcidin controls the availability of iron in the blood stream by inhibiting the iron exporter ferroportin in the gut and spleen. It has long been speculated that a third organ could be involved: an abundance of ferroportin has been observed in the kidney, implicating it in the reabsorption of iron from urine back into the circulation. However, the extent to which the kidney contributes to the regulation of iron in the body has so far been little understood. We do not know how important the kidney iron reabsorption is, nor how it is regulated.

A new study from the Lakhal-Littleton Research Group (Department of Physiology, Anatomy & Genetics - DPAG) has formally demonstrated that the kidney indeed reabsorbs iron back into the blood stream using ferroportin. Their findings show that if ferroportin in the kidney is blocked, there is a reduction in the body’s iron levels, which is quickly corrected by a compensatory increase in gut iron absorption.  According to Associate Professor Samira Lakhal-Littleton: “This means that under normal physiological conditions, the kidney is a less important  source of iron than the gut and spleen.”

Read the full story on the DPAG website.

Similar stories

Major grant to strengthen research and benefit patients

Oxford University Hospitals (OUH) has made a grant of £11.5 million to the University of Oxford, which the University will match with other funding, to allow the development of major clinical research facilities which have the potential to support the introduction of innovative and ground-breaking treatments for patients.

Dr Lennard Lee awarded ACP McElwain Prize for contributions to medical oncology

Dr Lee (Department of Oncology) received the award to acknowledge his contributions during the COVID-19 pandemic, through the establishment of the UK Coronavirus Cancer Monitoring Project.

Oxford joins forces with 11 universities to launch social impact investment fund

The University of Oxford has joined forces with 11 leading universities to create Impact 12, an impact investment fund to support mission-led university ventures.

Ivermectin to be investigated as a possible treatment for COVID-19 in the PRINCIPLE trial

From today, ivermectin is being investigated in the UK as part of the Platform Randomised Trial of Treatments in the Community for Epidemic and Pandemic Illnesses (PRINCIPLE), the world’s largest clinical trial of possible COVID-19 treatments for recovery at home and in other non-hospital settings.

Potential for radiotherapy and VTP multimodality therapy for prostate cancer

A recent collaborative study from the University of Oxford has investigated the potential benefit of a combined therapy approach to prostate cancer treatment, using radiotherapy and vascular targeted photodynamic therapy (VTP), which could lead to first-in-man early phase clinical trials.

Latest data on immune response to COVID-19 reinforces need for vaccination, says Oxford-led study

A new study led by the University of Oxford has found that previous infection, whether symptomatic or asymptomatic, does not necessarily protect you long-term from COVID-19, particularly against new Variants of Concern.