Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Dr Alessandro Bongioanni, Postdoctoral Research Associate in the Department of Experimental Psychology, writes for the Oxford Science Blog on the way humans and other primates make first-time choices.

Monkey

One thing that makes our brain so fascinating is the staggering range of behaviours it allows. We are not just good at doing things in environments we know well (such as shopping at our usual grocery store), but we are surprisingly successful at navigating novel environments (such as scrolling this blog, making new friends, finding a job, etc.).

When I was an adolescent, I went for the first time to the only Thai restaurant in my city. Every single dish in the menu was new for me. I knew oysters, I knew beef, but I had never tried fried beef in oyster sauce before. Still, I was able to make up my mind and speculate that I would probably like the fried beef more than the chicken in coconut soup. This simple anecdote illustrates something bigger: all human progress required people to leave the comfort of a familiar situation and explore new places or new ideas. Today, with social and technological changes accelerating, we are continuously exposed to novel objects and situations and we generally cope very well with them.

If the ability to make adaptive choices in novel situations is so crucial for our human exploits, surely this is a unique ability of our species? Well, no. Animals too are able to adapt to new environments and to express meaningful preferences among objects or situations that they have never encountered before, based on similarities with what they know.

Read the full blog on the University of Oxford website

Read the full paper, which was published recently in Nature.

Similar stories

Language learning difficulties in children linked to brain differences

A new study using MRI has revealed structural brain changes in children with developmental language disorder (DLD), a common but under-recognised difficulty in language learning. Children with DLD aged 10-15 showed reduced levels of myelin in areas of the brain associated with speaking and listening to others, and areas involved in learning new skills. This finding is a significant advance in our understanding of DLD and these brain differences may explain the poorer language outcomes in this group.

The Gene Therapists Headline at Glastonbury 2022

Rosie Munday writes about her experience taking science to the masses at the Glastonbury Festival.

New research reveals relationship between particular brain circuits and different aspects of mental wellbeing

Researchers at the University of Oxford have uncovered previously unknown details about how changes in the brain contribute to changes in wellbeing.

Night-time blood pressure assessment is found to be important in diagnosing hypertension

Around 15% of people aged 40-75 may have a form of undiagnosed high blood pressure (hypertension) that occurs only at night-time. Because they do not know about this, and therefore are not being treated for it, they are at a higher risk of cardiovascular disease such as stroke, heart failure, and even death, suggests new research from the University of Oxford published in the British Journal of General Practice.

Major new NIHR Global Health Research Unit to focus on data science and genomic surveillance of antimicrobial resistance

The Centre for Genomic Pathogen Surveillance, part of the Big Data Institute at the University of Oxford, has been awarded funding worth £7m for their work as an NIHR Global Health Research Unit (GHRU) for the next five years. The Centre’s research and capacity building work focuses on delivering genomics and enabling data for the surveillance of antimicrobial resistance (AMR).