Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Researchers from the Department of Physiology, Anatomy & Genetics (DPAG) have collaborated on an international study that demonstrates a detailed mechanistic understanding of how the anti-malaria drug, Hydroxychloroquine, combined with antibiotics, can cause adverse cardiac side-effects in COVID-19 patients. This gives weight to US Federal advice against using this combined treatment.

Blue and white capsules pill in blister pack arranged neatly together

Hydroxychloroquine (HCQ), a drug normally used to treat malaria, has recently been touted as a potential treatment for coronavirus. International interest in the drug was raised following reports of US President Donald Trump taking the drug to ward off COVID-19 and there have been clinical trials in several countries testing its effectiveness. However, many scientists have warned about side effects of using HCQ, which has led to the World Health Organisation temporarily suspending several studies over safety fears. 

Recent reports on the use of HCQ alone, or combined with an antibiotic called azithromycin (AZM), in the management of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have specifically raised concerns over cardiac safety. However, so far little has been known about the mechanisms behind HCQ and AZM therapy to help evaluate cardiac safety, and therefore conclusively determine if it is unsafe for the heart.

A new international study, on which the DPAG groups of Professor David Paterson, with Dr Dan Li, and Associate Professor Neil Herring have collaborated, has provided mechanistic insight into how HCQ alone and HCQ with AZM affects cardiac electrophysiology.

Read the full story on the DPAG website

Similar stories

Five ways the pandemic has affected routine medical care

Since the beginning of the pandemic, COVID has infected at least a third of the UK population and is estimated to have factored in the deaths of almost 200,000 people in the UK. But critically, COVID has also had a devastating impact on our healthcare systems. While this was expected, new evidence is beginning to reveal the scope of the issue – in particular the effects for people living with long-term health conditions.

Clinical trials for a malaria vaccine start in Mali and Indonesia

Sanaria Inc. announced that two new Phase 2 trials of its pioneering malaria vaccines have started. The first is in 6- to 10-year-old children living in Bancoumana, Mali, a malarious region of West Africa. The second is in Indonesian soldiers based in Sumatra, Indonesia. The soldiers will be deploying for six to nine months this coming August to an intensely malarious district in eastern Indonesia.

20 minutes of daily exercise can keep teens' doctors away

Teenagers should exercise vigorously for at least 20 minutes per day to reap increased cardiorespiratory fitness (CRF), according to a cross-sectional study from the UK led by University of Oxford researchers.

Mechanism of expanding bacteria revealed

A new study published in Nature has identified a potential Achilles heel in the protective layers surrounding Gram-negative bacteria that could aid in the development of next-generation antibiotics.

Oxford to receive £7 million to turn bright ideas into global opportunities

The University of Oxford has been awarded more than £7 million, the highest amount of funding given to organisations across the UK, in the latest round of UK Research and Innovation’s (UKRI) Impact Acceleration Account (IAA) funding - aimed at fueling the best, brightest and most disruptive ideas from Uk research institutions.

Discovery of gene involved in chronic pain creates new treatment target

Oxford researchers have discovered a gene that regulates pain sensitisation by amplifying pain signals within the spinal cord, helping them to understand an important mechanism underlying chronic pain in humans and providing a new treatment target.