Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Researchers from the Department of Physiology, Anatomy & Genetics (DPAG) have collaborated on an international study that demonstrates a detailed mechanistic understanding of how the anti-malaria drug, Hydroxychloroquine, combined with antibiotics, can cause adverse cardiac side-effects in COVID-19 patients. This gives weight to US Federal advice against using this combined treatment.

Blue and white capsules pill in blister pack arranged neatly together

Hydroxychloroquine (HCQ), a drug normally used to treat malaria, has recently been touted as a potential treatment for coronavirus. International interest in the drug was raised following reports of US President Donald Trump taking the drug to ward off COVID-19 and there have been clinical trials in several countries testing its effectiveness. However, many scientists have warned about side effects of using HCQ, which has led to the World Health Organisation temporarily suspending several studies over safety fears. 

Recent reports on the use of HCQ alone, or combined with an antibiotic called azithromycin (AZM), in the management of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have specifically raised concerns over cardiac safety. However, so far little has been known about the mechanisms behind HCQ and AZM therapy to help evaluate cardiac safety, and therefore conclusively determine if it is unsafe for the heart.

A new international study, on which the DPAG groups of Professor David Paterson, with Dr Dan Li, and Associate Professor Neil Herring have collaborated, has provided mechanistic insight into how HCQ alone and HCQ with AZM affects cardiac electrophysiology.

Read the full story on the DPAG website

Similar stories

New Studentship honours Enzo Cerundolo

A new Studentship has been announced in memory of the late MRC HIU Director and MRC WIMM Group Leader.

Young lives under pressure as global crises hits mental health and well-being – report

The well-being and mental health of young people in low - and middle - income countries have been dramatically affected by the series of crises hitting the world. As the international community continues to struggle with the impact of COVID-19, conflict and climate change, the latest report from the Young Lives project shows a long-running upward trend in young people’s well-being has been sharply reversed alongside widespread anxiety and depression. Young people are less confident about their futures for the first time in the 20-year study.

Bacterial infections linked to one in eight global deaths, according to GRAM study

Data showing 7.7 million deaths from 33 bacterial infections can guide measures to strengthen health systems, particularly in low-income settings

New tool aims to make bowel cancer treatments more effective

The Leedham Lab in Nuffield Department of Medicine (NDM) has been awarded over £2M from Cancer Research UK to develop a new tool that could help guide how bowel cancer patients are treated in the future.

Doug Higgs awarded the 2023 Genetics Society Medal

The award recognises Radcliffe Department of Medicine's Professor Higgs major contribution to our understanding of how mammalian genes are switched on and off, and using haematopoiesis as a model to understand how genes function.