Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In this long read published to coincide with International AIDS Day, we explore how an international collaboration – of which the University of Oxford is a key partner – has boosted HIV vaccine research. We thank our partners at Imperial College London for allowing us to reproduce and abridge this article.

An illustration that depicts scientists strategizing around a drawing of an HIV virus © Marzia Munafo

Since COVID-19 reared its head in December 2019, the global scientific community has developed several effective vaccines against the virus. The US Food and Drug Administration (FDA) approved the Pfizer-BioNTech vaccine in December 2020, just one year after COVID-19 was first detected. Around the same time, the UK government also approved a vaccine developed by the University of Oxford in partnership with AstraZeneca.

HIV has been around for decades, and hundreds of thousands of people around the world die every year from the disease, yet no effective vaccine exists.

‘Without a vaccine, we will not be able to control the AIDS epidemic,’ said Tomáš Hanke, Professor of Vaccine Immunology at the Jenner Institute, Nuffield Department of Medicine, University of Oxford.

‘We’ve been trying to develop a vaccine for HIV for over 30 years as a field,’ said Professor Robin Shattock, Head of Mucosal Infection and Immunity within the Faculty of Medicine at Imperial College London.

‘It still remains one of the biggest biological challenges of a generation.’

Read the full story on the University of Oxford website

Similar stories

Oxford spinout trials revolutionary bioelectronic implant to treat incontinence

The first participants in a clinical trial of a bioelectrical therapy to treat incontinence have received their “smart” bioelectronic implants.

COVID-19 is a leading cause of death in children and young people in the US

A new study led by researchers at the University of Oxford’s Department of Computer Science has found that, between 2021 and 2022, COVID-19 was a leading cause of death in children and young people in the United States, ranking eighth overall. The results demonstrate that pharmaceutical and public health interventions should continue to be applied to limit the spread of the coronavirus and protect again severe disease in this age group.

Three or more concussions linked with worse brain function in later life

Experiencing three or more concussions is linked with worsened brain function in later life, according to new research.

New blood test could save lives of heart attack victims

Researchers in the Department of Physiology, Anatomy and Genetics (DPAG) have developed a blood test that measures stress hormone levels after heart attacks. The test – costing just £10 – could ensure patients receive timely life-saving treatment.

COVID-19 increased public trust in science, new survey shows

A survey of over 2000 British adults has found that public trust in science, particularly genetics, increased significantly during the pandemic. However, those with extremely negative attitudes towards science tend to have high self-belief in their own understanding despite low textbook knowledge.

Gero Miesenböck awarded 2023 Japan Prize

Congratulations to Professor Gero Miesenböck, Department of Physiology, Anatomy and Genetics (DPAG), who has been awarded the 2023 Japan Prize in the field of Life Sciences, together with Professor Karl Deisseroth, for pioneering work in the field of optogenetics.