Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Studies carried out in the MRC Human Immunology Unit (MRC HIU) in collaboration with the Pirbright Institute have shown that a new potential vaccine against COVID-19, named RBD-SpyVLP, produces a strong antibody response in mice and pigs, providing vital information for the further development of the vaccine. Although this type of vaccine is not a competitor for the first wave of vaccines, it is hoped that it will be useful as a standalone vaccine or as a booster for individuals primed with a different COVID-19 vaccine.

Research scientist in a laboratory

The Oxford-produced RBD-SpyVLP vaccine candidate contains part of the SARS-CoV-2 spike protein called the receptor-binding domain (RBD), which a range of protective neutralising antibodies can bind to in a way that blocks infection. The RBD is attached to a virus-like particle (VLP) that contains no genetic material using Oxford’s SpyTag/SpyCatcher technology, a kind of protein ‘superglue’. This was shown to generate a greater antibody response in mice than administering the RBD alone. Pirbright researchers tested the RBD-SpyVLP vaccine in pigs as a large animal model to establish if different dosages would affect the immune response.

The research, published in Nature Communications, demonstrated that RBD-SpyVLP produces a strong neutralising antibody response. The study also examined samples taken from the nose and mouth of vaccinated pigs and found SARS-CoV-2 specific antibodies were present. This is a promising finding since antibodies at the site of entry for SARS-CoV-2 could be important for providing robust protection. Interestingly, no difference was found in the magnitude of antibody response when comparing vaccine dose levels. This suggests that the smaller dose tested, which is the same as intended for human administration, may provide equal protection to larger doses or that even lower doses of the vaccine could be effective.

Read the full story on the MRC Weatherall Institute of Molecular Medicine website.

 

 

Similar stories

Oxford-led team given £6.6m to map uncharted networks in the progression of Parkinson’s

A major new $9 million (£6.6 million) project funded by the Aligning Science Across Parkinson’s (ASAP) initiative will map the original circuits vulnerable to Parkinson’s on an unprecedented scale. It is the only UK-led ASAP project this year, and the first ever to be led by Oxford.

Tamoxifen repurposing study shows no benefit in treating deadly fungal meningitis

Hopes that tamoxifen could improve survival for a deadly form of fungal meningitis have been dashed by the results of a clinical trial conducted by University of Oxford researchers and published today in eLife.

Oxford researchers awarded funding to complete community COVID-19 antiviral trial

Researchers from the Nuffield Department of Primary Care Health Sciences, University of Oxford, have today announced that they have been awarded funding through the National Institute for Health Research (NIHR) to work with several UK universities and carry out a first-of-its-kind clinical trial, testing novel antiviral COVID-19 treatments for use early on in the illness by people in the community with COVID-19 who are at higher risk of complications.

New therapeutic targets identified to treat inflammatory bowel disease

Millions of patients with ulcerative colitis or Crohn’s disease, collectively known as inflammatory bowel disease (IBD), are given fresh hope as a new study shows why some of them do not respond to current treatments.

Oxford researchers call for an urgent re-evaluation of “weak” opioid safety profile

A new study associates dispensation doses of tramadol with increased risk of mortality, cardiovascular events, and fractures compared to the use of codeine to treat pain.

Labelling proteins through the diet gives new insights into how collagen-rich tissues change as we age

A new study, published in eLife, uses advanced tissue analysis technology to show how the incorporation of new proteins changes in bone and cartilage with age.