Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The Conversation logo

Exactly 30 years ago, I was pondering a graph of primate group sizes plotted against the size of their brains: the larger the brain, the larger the group size. I was curious to know what group size this relationship might predict for humans.

The number my calculations gave was 150. Since this seemed low, I hurried off to the library to look for data on natural human group sizes. Hunter-gatherers live in multilevel societies, with groupings of individuals forming a hierarchically layered structure – families within bands, bands within communities, communities within tribes.

The community level of organisation turned out to be almost exactly 150. Thus was born the “social brain hypothesis” and “Dunbar’s number”, the former referring to the relationship between group size and brain size in primates and the latter referring to the natural group size of about 150 for humans.

Dunbar’s number has attracted a great deal of attention over the years. For example, it has been used in the design of social media platforms, as well as being the basis of “secret handshake” online security algorithms and bot-detection software.

Read the full article on The Conversation website, written by Emeritus Professor Robin Dunbar, Department of Experimental Psychology

Oxford is a subscribing member of The ConversationFind out how you can write for The Conversation.

Similar stories

New evidence for how our brains handle surprise

A new study from the Bruno Group is challenging our perceptions of how the different regions of the cerebral cortex function. A group of ‘quiet’ cells in the somatosensory cortex that rarely respond to touch have been found to react mainly to surprising circumstances. The results suggest their function is not necessarily driven by touch, but may indicate an important and previously unidentified role across all the major cortices.

Language learning difficulties in children linked to brain differences

A new study using MRI has revealed structural brain changes in children with developmental language disorder (DLD), a common but under-recognised difficulty in language learning. Children with DLD aged 10-15 showed reduced levels of myelin in areas of the brain associated with speaking and listening to others, and areas involved in learning new skills. This finding is a significant advance in our understanding of DLD and these brain differences may explain the poorer language outcomes in this group.

The Gene Therapists Headline at Glastonbury 2022

Rosie Munday writes about her experience taking science to the masses at the Glastonbury Festival.

New research reveals relationship between particular brain circuits and different aspects of mental wellbeing

Researchers at the University of Oxford have uncovered previously unknown details about how changes in the brain contribute to changes in wellbeing.

Night-time blood pressure assessment is found to be important in diagnosing hypertension

Around 15% of people aged 40-75 may have a form of undiagnosed high blood pressure (hypertension) that occurs only at night-time. Because they do not know about this, and therefore are not being treated for it, they are at a higher risk of cardiovascular disease such as stroke, heart failure, and even death, suggests new research from the University of Oxford published in the British Journal of General Practice.