Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Researchers at the University of Oxford are working with clinical collaborators from NHS hospitals to carry out a new clinical drug trial aimed at treating COVID-19, funded by LifeArc. It will test a drug that could raise oxygen levels in the blood in COVID-19 patients in order to improve their chances of recovery. Raising oxygen levels is important in COVID-19, because many patients with the disease die when oxygen levels in their arterial blood fall to levels that are too low to support life.

Pulmonology vector illustration. Flat tiny lungs healthcare persons concept. Abstract respiratory system examination and treatment. Internal organ inspection check for illness, disease or problems.

Currently, supportive therapy for COVID-19 in hospitals aims to keep oxygen levels sufficiently high with treatments such as supplementary oxygen or by using ventilators to artificially support the body’s breathing process. In normal circumstances, if the oxygen becomes too low in a part of the lung, the blood vessels in that part constrict to redirect the blood flow to other regions of the lung where the oxygen is higher. In COVID-19 patients, however, the Oxford University researchers hypothesise that this mechanism is not working properly. Consequently, the blood flow is going to the most diseased and non-functioning parts of the lung where the oxygen is low, and is not getting diverted to the healthier parts of the lung where the oxygen is higher. This means that too much blood flows through the lungs without picking up oxygen.

The Department of Physiology, Anatomy & Genetics (DPAG) led research team aims to address this problem by preferentially constricting the blood vessels going through the diseased parts of the lung, thereby redirecting the blood towards the healthy parts where it can pick up oxygen. To do this, they will use an old drug first developed in France called almitrine bismesylate, which is known in the scientific community to have this effect when treating acute respiratory distress syndrome (ARDS). The drug acts to increase the sensitivity of the acute oxygen sensing mechanisms of the body. According to Lead Researcher Professor Peter Robbins: “We know that almitrine can increase oxygen levels in patients with acute respiratory distress syndrome by constricting the blood vessels in regions of the lung where the oxygen is low. We want to see if almitrine will also have this effect in COVID-19 patients.”

Read the full story on the DPAG website

This story is also featured on the University of Oxford website

Similar stories

Peter Horby receives prestigious award for outstanding service to public health

The Faculty of Public Health (FPH) has awarded its prestigious Alwyn Smith Prize to Professor Sir Peter Horby (Nuffield Department of Medicine) for 2020/2021 in recognition of his outstanding service to public health as a global leader in epidemic science.

Six new Fellowships announced as part of Oxford-Bristol Myers Squibb Fellowships Programme

The Oxford - Bristol Myers Squibb (BMS) Fellowships Programme continued to demonstrate significant progress over the last year, despite the challenges associated with the global pandemic, including restricted lab access and work from home guidance. Today, we are pleased to announce six new Oxford-BMS Fellowships for 2021.

Researchers set out steps to address mental health effects of the pandemic on young people

Researchers have outlined 14 steps that schools, mental health services and policymakers can take to help children and young people whose mental health has been affected by the COVID-19 pandemic.

Anti-cancer drug derived from fungus shows promise in clinical trials

A new industry-academic partnership between the University of Oxford and biopharmaceutical company NuCana as found that chemotherapy drug NUC-7738, derived from a Himalayan fungus, has 40 times greater potency for killing cancer cells than its parent compound.

Professor Trish Greenhalgh Highly Commended in the O²RB Excellence in Impact Awards 2021

Congratulations to Professor Trish Greenhalgh (Nuffield Department of Primary Care Health Sciences) who has been Highly Commended in the O²RB Excellence in Impact Awards 2021.

No benefit of convalescent plasma for critically ill COVID-19 patients

A large study of over 2000 COVID-19 patients has found that giving critically ill patients blood plasma from recovered COVID-19 patients did not significantly reduce deaths, or the need for intensive care support such as being put on a ventilator machine.