Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Congratulations are in order for postdoctoral research scientist Dr Christoph Treiber who has been awarded a Starting Grant from the European Research Council. His funded project will investigate the genetic components that may contribute to diversity of brain function and behaviour.

15 fruit fly brains in a colourful grid design © Gil Costa (www.gilcosta.com)

A large part of our genome is made up of potentially mobile pieces called transposons, also known as ‘jumping genes’ for their ability to change their position. While humans largely share the same genes in our DNA, the combination of transposons are unique for each person. Recent evidence uncovered in 2020 by Dr Christoph Treiber and Professor Scott Waddell in the Centre for Neural Circuits and Behaviour (CNCB) suggests that transposons are particularly active in the brain. This has given rise to a new hypothesis that transposons might change brain functions and contribute to the diversity of behaviours across individuals within a population.

Dr Christoph Treiber of the Waddell group has now been awarded a European Research Council (ERC) Starting Grant to begin an independent line of research to interrogate this hypothesis over the next five years. The award of more than £1.25 million will “help us understand whether our unique transposon fingerprint contributes to who we are. Transposons could be a key component of our personality.” (Dr Christoph Treiber).

With this new award, Dr Treiber will combine two novel and ground-breaking techniques to test the hypothesis in the fruit fly brain, a well-established model for studying how genes alter behaviours. The first, single-cell transcriptomics, has been pioneered by Dr Treiber and Dr Vincent Croset in the Waddell Group at the CNCB. The second, PacBio® single-molecule real-time (SMRT) sequencing generates full length cDNA sequences from cells and tissues.

Read the full story on the DPAG website. 

Similar stories

COVID-19 increased public trust in science, new survey shows

A survey of over 2000 British adults has found that public trust in science, particularly genetics, increased significantly during the pandemic. However, those with extremely negative attitudes towards science tend to have high self-belief in their own understanding despite low textbook knowledge.

Gero Miesenböck awarded 2023 Japan Prize

Congratulations to Professor Gero Miesenböck, Department of Physiology, Anatomy and Genetics (DPAG), who has been awarded the 2023 Japan Prize in the field of Life Sciences, together with Professor Karl Deisseroth, for pioneering work in the field of optogenetics.

Major funding for Oxford will help find new cancer treatments

Cancer Research UK and the National Institute for Health and Care Research are investing over £3 million across the next five years into The University of Oxford’s Experimental Cancer Medicine Centre (ECMC). The investment will enable Oxford to expand its portfolio of precision prevention and early detection cancer trials.

Daniel Freeman to join Department of Experimental Psychology as Professor of Psychology

The Department of Experimental Psychology are delighted to announce that Daniel Freeman has been appointed as their new Professor of Psychology, joining from the Department of Psychiatry.

New study reveals role of lymphatic system in bone healing

It was previously assumed that bones lacked lymphatic vessels, but new research from the MRC Human Immunology Unit at Oxford's MRC Weatherall Institute for Molecular Medicine not only locates them within bone tissue, but demonstrates their role in bone and blood cell regeneration and reveals changes associated with aging.

Vaccination shown to protect against pregnancy complications from COVID-19 Omicron variant

The global network led by the Oxford Maternal and Perinatal Health Institute (OMPHI) at the University of Oxford has today published, in The Lancet, the results of the ‘2022 INTERCOVID Study’ conducted in 41 hospitals across 18 countries.