Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In an analysis, submitted as a pre-print prior to peer-review publication, a two-dose regimen of the ChAdOx1 nCoV-19 vaccine provides minimal protection against mild-moderate COVID-19 infection from the B.1.351 coronavirus variant first identified in South Africa.

Researcher working on vaccine in the lab

Our vaccine work is progressing quickly. To ensure you have the latest information or to find out more about the trial, please visit the Oxford COVID-19 vaccine web hub or visit the COVID-19 trial website.

Efficacy against severe COVID-19 infection from this variant was not assessed. The analyses being submitted in the pre-print show the vaccine had high efficacy against the original coronavirus strain in South Africa.

Researchers from the University of Witwatersrand and others in South Africa and the University of Oxford, UK found that viral neutralisation by sera induced by the ChAdOx1 nCoV-19 coronavirus vaccine against the B.1.351 coronavirus variant were substantially reduced when compared with the original strain of the coronavirus.

These early data, have been submitted for scientific peer-review, appear to confirm the theoretical observation that mutations in the virus seen in South Africa will allow ongoing transmission of the virus in vaccinated populations, as has been recently reported even in those with prior infection due to earlier circulating variants.

Read the full story on the University of Oxford website

Similar stories

COVID-19 increased public trust in science, new survey shows

A survey of over 2000 British adults has found that public trust in science, particularly genetics, increased significantly during the pandemic. However, those with extremely negative attitudes towards science tend to have high self-belief in their own understanding despite low textbook knowledge.

Gero Miesenböck awarded 2023 Japan Prize

Congratulations to Professor Gero Miesenböck, Department of Physiology, Anatomy and Genetics (DPAG), who has been awarded the 2023 Japan Prize in the field of Life Sciences, together with Professor Karl Deisseroth, for pioneering work in the field of optogenetics.

Major funding for Oxford will help find new cancer treatments

Cancer Research UK and the National Institute for Health and Care Research are investing over £3 million across the next five years into The University of Oxford’s Experimental Cancer Medicine Centre (ECMC). The investment will enable Oxford to expand its portfolio of precision prevention and early detection cancer trials.

Daniel Freeman to join Department of Experimental Psychology as Professor of Psychology

The Department of Experimental Psychology are delighted to announce that Daniel Freeman has been appointed as their new Professor of Psychology, joining from the Department of Psychiatry.

New study reveals role of lymphatic system in bone healing

It was previously assumed that bones lacked lymphatic vessels, but new research from the MRC Human Immunology Unit at Oxford's MRC Weatherall Institute for Molecular Medicine not only locates them within bone tissue, but demonstrates their role in bone and blood cell regeneration and reveals changes associated with aging.

Vaccination shown to protect against pregnancy complications from COVID-19 Omicron variant

The global network led by the Oxford Maternal and Perinatal Health Institute (OMPHI) at the University of Oxford has today published, in The Lancet, the results of the ‘2022 INTERCOVID Study’ conducted in 41 hospitals across 18 countries.