Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A new Klemm Lab-led paper has uncovered a new mechanism involving the endoplasmic reticulum that is critical to the organisation and position of the microtubule (MT) cytoskeleton, which ultimately dictates the shape and function of our body’s cells.

Genetic perturbation of ER (green) dynamics in COS7 cells causes tightly packed microtubule (red) bundles.
Genetic perturbation of ER (green) dynamics in COS7 cells causes tightly packed microtubule (red) bundles.

The microtubule (MT) cytoskeleton gives the eukaryotic cells of the body their shape, helps organise the cell’s parts, and provides a basis for movement and cell division. Yet, the basic principles regulating the position of MTs in interphase cells before cell division takes place are largely unknown.

The endoplasmic reticulum (ER), which constitutes more than half of the membranous content of a cell, has long been known to produce and transport proteins for the rest of the cell to function. However, a new paper led by Department of Physiology, Anatomy and Genetics (DPAG) Associate Professor Robin Klemm and first authored by Dr Maria S. Tikhomirova, has uncovered an unexpected role for the ER in controlling the organisation of the MT cytoskeleton in the cell. According to Prof Klemm: “This new perspective on the role of the ER in cellular organisation opens up a number of research directions and will lead to better understanding of mechanisms that cells use to position the MT cytoskeleton during migration or initiation and maintenance of axons.”

Using cutting edge computer simulation and automated microscopy, researchers have found that the dynamics of the ER network is pivotal in directing the sub-cellular distribution of MTs. In particular, they discovered that inhibition of membrane fusion in the ER leads to dramatic changes in ER network dynamics, namely strong re-positioning of both the ER membranes and the MT-cytoskeleton within cells.

Read the full story on the DPAG website

Similar stories

New evidence for how our brains handle surprise

A new study from the Bruno Group is challenging our perceptions of how the different regions of the cerebral cortex function. A group of ‘quiet’ cells in the somatosensory cortex that rarely respond to touch have been found to react mainly to surprising circumstances. The results suggest their function is not necessarily driven by touch, but may indicate an important and previously unidentified role across all the major cortices.

Language learning difficulties in children linked to brain differences

A new study using MRI has revealed structural brain changes in children with developmental language disorder (DLD), a common but under-recognised difficulty in language learning. Children with DLD aged 10-15 showed reduced levels of myelin in areas of the brain associated with speaking and listening to others, and areas involved in learning new skills. This finding is a significant advance in our understanding of DLD and these brain differences may explain the poorer language outcomes in this group.

The Gene Therapists Headline at Glastonbury 2022

Rosie Munday writes about her experience taking science to the masses at the Glastonbury Festival.

New research reveals relationship between particular brain circuits and different aspects of mental wellbeing

Researchers at the University of Oxford have uncovered previously unknown details about how changes in the brain contribute to changes in wellbeing.

Night-time blood pressure assessment is found to be important in diagnosing hypertension

Around 15% of people aged 40-75 may have a form of undiagnosed high blood pressure (hypertension) that occurs only at night-time. Because they do not know about this, and therefore are not being treated for it, they are at a higher risk of cardiovascular disease such as stroke, heart failure, and even death, suggests new research from the University of Oxford published in the British Journal of General Practice.