Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

A new Klemm Lab-led paper has uncovered a new mechanism involving the endoplasmic reticulum that is critical to the organisation and position of the microtubule (MT) cytoskeleton, which ultimately dictates the shape and function of our body’s cells.

Genetic perturbation of ER (green) dynamics in COS7 cells causes tightly packed microtubule (red) bundles.
Genetic perturbation of ER (green) dynamics in COS7 cells causes tightly packed microtubule (red) bundles.

The microtubule (MT) cytoskeleton gives the eukaryotic cells of the body their shape, helps organise the cell’s parts, and provides a basis for movement and cell division. Yet, the basic principles regulating the position of MTs in interphase cells before cell division takes place are largely unknown.

The endoplasmic reticulum (ER), which constitutes more than half of the membranous content of a cell, has long been known to produce and transport proteins for the rest of the cell to function. However, a new paper led by Department of Physiology, Anatomy and Genetics (DPAG) Associate Professor Robin Klemm and first authored by Dr Maria S. Tikhomirova, has uncovered an unexpected role for the ER in controlling the organisation of the MT cytoskeleton in the cell. According to Prof Klemm: “This new perspective on the role of the ER in cellular organisation opens up a number of research directions and will lead to better understanding of mechanisms that cells use to position the MT cytoskeleton during migration or initiation and maintenance of axons.”

Using cutting edge computer simulation and automated microscopy, researchers have found that the dynamics of the ER network is pivotal in directing the sub-cellular distribution of MTs. In particular, they discovered that inhibition of membrane fusion in the ER leads to dramatic changes in ER network dynamics, namely strong re-positioning of both the ER membranes and the MT-cytoskeleton within cells.

Read the full story on the DPAG website

Similar stories

Long COVID: vaccination could reduce symptoms, new research suggests

While evidence suggests that people who are vaccinated before they get COVID are less likely to develop long COVID than unvaccinated people, the effectiveness of vaccination on existing long COVID has been less clear.

Com-COV vaccine study to research third dose booster options for 12-to-15-year-olds

Researchers running the University of Oxford-led Com-COV programme have launched a further study of COVID-19 vaccination schedules in young people aged 12 to 15 – with a focus on assessing different options for a third dose booster vaccination.

Population-scale study highlights ongoing risk of COVID-19 in some cancer patients despite vaccination

COVID-19 vaccination is effective in most cancer patients, but the level of protection against COVID-19 infection, hospitalisation and death offered by the vaccine is less than in the general population and vaccine effectiveness wanes more quickly.

New reporting guidelines developed to improve AI in healthcare settings

New reporting guidelines, jointly published in Nature Medicine and the BMJ by Oxford researchers, will ensure that early studies on using Artificial Intelligence (AI) to treat real patients will give researchers the information needed to develop AI systems safely and effectively.

Major boost for Oxford’s mission to counter future pandemic threats

The Moh Family Foundation has given a substantial gift to support the work of Oxford University’s Pandemic Sciences Institute, greatly strengthening its ability to identify and counter future pandemic threats and ensure equitable access to treatments and vaccines around the world.